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Modeling Heterogeneous Network Traffic
In Wavelet Domain

Sheng MaMember, IEEEand Chuanyi Ji

Abstract—Heterogeneous network traffic possesses diverseworks and diverse network applications. The goal of this work
statistical properties which include complex temporal correlation is to develop a traffic model that is both accurate in capturing
and non-Gaussian distributions. A challenge to modeling hetero- o afgrementioned statistical properties and computationally

geneous traffic is to develop a traffic model which can accurately fficient for d loDi del I i theti
characterize these statistical properties, which is computationally €MCI€Ntior deveioping a model as well as generating synthetic

efficient, and which is feasible for analysis. This work develops traffic.

wavelet traffic models for tackling these issues. In specific, we  The complex temporal correlation of network traffic can
model the wavelet coefficients rather than the original traffic. Our  pe characterized by the short-range (SRD) and the long-range
approach is motivated by a discovery that although heterogeneous dependence (LRD). Examples of traffic exhibiting SRD in-

network traffic has the complicated short- and long-range tem- . . )
poral dependence, the corresponding wavelet coefficients are all clude voice-over IP (Volp) [41] and VBR video traces [21];

“short-range” dependent. Therefore, a simple wavelet model may and examples of traffic possessing LRD include web request
be able to accurately characterize complex network traffic. We traffic [12] and Ethernet data traffic [32]. The autocorrelation
first investigate what short-range dependence is important among function of SRD traffic decays exponentially, and that of LRD
wavelet coefficients. We then develop the simplest wavelet mOdeI‘traﬁ‘iC decays hyperbolically. For real-time applications, it has

i.e., the independent wavelet model for Gaussian traffic. We define .
and evaluate the (average) autocorrelation function and the buffer P€€N Shown that only SRD is relevant [25], [55], [7], [21],

loss probability of the independent wavelet model for Fractional and [32]. Numerous models corresponding to short-range-de-
Gaussian Noise (FGN) traffic. This assesses the performance of thependent processes can be used to model SRD reasonably
independent wavelet model, and the use of which for analysis. We wel|l. These models include variants of Markov processes [3],
a!s_o develop (low-order) Markov Wavelet_models to capture ad- [20], [49], [57], [61], [64] and DAR [16], [25]. For nonreal
ditional dependence among wavelet coefficients. We show that an _. L .

independent wavelet model is sufficiently accurate, and a Markov time app_llca.tlons such as video-on-demand, most of the dat_a
wavelet model only improves the performance marginally. We communications and some network management tasks, a traffic
further extend the wavelet models to non-Gaussian traffic through model needs to capture the temporal dependence at large time
developing a novel time-scale shaping algorithm. The algorithm gcales, i.e., the long-range dependence. The Markov-type
is tested using real network traffic and shown to outperform models, when extended to capture LRD, often result in a com-

FARIMA in both efficiency and accuracy. Specifically, the wavelet . .
models are parsimonious, and have the computation complexity plicated structure with many states/parameters [3]. Models such

O(N) in developing a model from a training sequence of length as Fractional Gaussian Noise (FGN) processes [32] can capture
N,and O(M) in generating a synthetic traffic trace of lengthM. the long-range dependence but not the short-range dependence.
Index Terms—tong-range dependence, network traffic mod- [N fact, network traffic such as VBR video can exhibit a
eling, self-similiar traffic, wavelets. complex mixture of SRD and LRD. That is, the corresponding
autocorrelation function behaves similarly to that of long-range
dependent processes at large lags, and to that of short-range
dependent processes at small lags [7], [21]. Models developed
RAFFIC modeling and understanding is imperative to nete characterize both SRD and LRD include FARIMA [21], a
work design and simulation, to providing quality of sermodel based on the Hosking procedure [26], the scene-based
vice (QoS) to diverse applications, and to network managemembdel [27], the Markov Modulated Process [3], [52], the fractal
and control. Numerous models have been proposed in the gasint process [54], and thé//G/cc model [31]. Among
for modeling network traffic. However, it remains open how tthese methods, the scene-based model [27] and the Markov
model heterogeneous network traffic possessing two pertindhddulated process [3], [52] provide a physically interpretable
statistical properties: complex temporal correlation and manodel to include both long-range and short-range dependence.
ginal distributions that result from the complexity of (IP) netHowever, due to the stochastic nature of network traffic, it is
difficult to accurately define and segment network traffic into
Manuscript received March 3, 1999; revised March 13, 2000; recommenogmerent States n t_h_e time domain. FAR_IMA models are not
by IEEE/ACM TRANSACTIONS ONNETWORKING Editor T. V. Lakshman. This computationally efficient. They may require a large number of
work was supported by the National Science Foundation under contracts Ngfydel parameters ar@I(NQ) computational time to develop a
9805338 and CAREER IRI-9502518. del f ﬁ.’ flenatly and heti
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IS a point process. Its efficiency in generating a high volume of
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Non-Gaussian distribution is another important statisticf1], [50] have applied multiplicative wavelet models to model
property of heterogeneous traffic. It has been shown that batetwork traffic.
video and data traffic have heavy-tailed non-Gaussian marginallhe main contributions of this work include: 1) the applica-
probability density functions (PDFs) [21], [53], [30]. Moreovertion of the wavelet approach for modeling heterogeneous traffic;
the higher order statistics of traffic can have a significant impa2} the development of a novel time-scale shaping algorithm to
on accurately predicting the buffer overflow probability [26]jncorporate non-Gaussian distributions of network traffic; and
[23]. Algorithms have been proposed to incorporate high@) investigation of the performance of the wavelet models using
order statistics by matching the marginal distribution and thetworking-related performance measures.
second-order statistics of network traffic [26], [44], [24]. How- Herein, we first investigate whether/why the wavelet mod-
ever, their performance, measured by the queueing resultsgligg approach is indeed capable of capturing the complex
still not as desirable [26]. This is because these algorithms of@mporal dependence in heterogeneous traffic. For this, we de-
model the marginal distribution of the traffic at the finest timé&ve analytical results on the correlation of wavelet coefficients.
scale, whereas the marginal distributions across different tirhBese results show that a key advantage of using wavelets
scales should be modeled for accurately predicting queueifigtheir ability to reduce the complex temporal dependence
behavior. so significantly that the wavelet coefficients only possess the

The goal of this work is to develop a traffic model whictshort-range dependence. With these results, we first develop
can capture complex temporal dependence in terms of p¥¢avelet models for both SRD and LRD Gaussian traffic, and
LRD and SRD, which can model non-Gaussian distributions {3en develop a novel multitime-scale shaping algorithm for the
achieve accurate queueing performance, and which is Complﬂgn—Gau.ssmn _dlstnbute.d traffic. After we assess our models
tionally efficient. Why are these aspects difficult to be achievdirough intensive experiments, we further assess our wavelet
simultaneously? The main reason is that the heterogene8iRdels analytically for modeling FGN traffic. In particular,
traffic is intrinsically complex in the time domain. This makedV€ Shows that the average buffer overflow probability of the
it difficult for the time-domain models to be both accurate anffdePendent wavelet model, when used to model FGN traffic,

efficient. Models have been developed in the frequency domafn@Symptotically close to that of the original traffic. We show
tgat the autocorrelation function of the independent wavelet

[34]. Although the harmonics are not a generic representation del of EGN traffic has th h bolic d
heterogeneous traffic, the idea of modeling in a transformati Pdel o traffic has the same ( yperbo ic) decay rate as
the original traffic, with an approximation error of less than

domain [34] motivates our work in this paper. 506, F th tational effici i h
Which transformation domain may be suitable for modelin 0. ~rom the computational efliciency perspective, we show
at wavelet models are parsimonious, and have the lowest

network traffic? Shermaet al.[56] demonstrated thatthestatis—C moutational comolexity. In_ specific. the computational
tical properties of the aggregated traffic are self-similar acros§ @ putation piexity. SP ' P

X . " complexity is O(N) in developing a wavelet model from a

wide range of time scales. In addition, network control and maji- . . ;

) ) raining sequence of lengttv, and O(M) in generating a

agement are often performed at different time scales. All thesenthetic sample path of lenaftf

motivate us to model heterogeneous traffic based on time sca?él pie p g

We show later that time scales can be naturally represented he paper is organized as follows. Section 11 provides back-
y rep dund knowledge. Section Il studies why wavelet models are
wavelets. We also demonstrate that the wavelet representa

. o i for long- hort- ffic.
matches the properties of the bursty network traffic, in that t B3d candidates for ong- and short-range dependent traffic

. ection IV investigates Gaussian wavelet models. Section V
wavelet coefficients are short-range dependent even thougha %Iops a time-scale shaping algorithm to extend the inde-

corresponding heterogeneous traffic may be long-range depﬁghdent wavelet models to non-Gaussian traffic. Section VI

dent. Consequently, a simple yet accurate model can be der"ﬁ?gsents experimental results which validate the performance

in the wavelet domain. .of the wavelet models. Section VIl provides analysis on the

Wavelet models have been developed for fractional Brownialyigcorrelation function and the buffer loss probability of the

motion (FBM) and scale-invariant processes [4], [5], [35], andlgependent wavelet model of FGN traffic to further evaluate
[18]in signal processing. Wornegt al.[63] have proven thatthe yhe performance of the wavelet models. Section VIl discusses
spectrum of the independent wavelet model of an FBM processy results. Section IX concludes the paper.

is very close to that ot / f processes. Therefore, the indepen-
dent wavelet model has been proposed to rapidly generate FBM
of FGN-like synthetic sample paths. However, the previous in-
vestigation on (asymptotic) correlation structure of wavelet cé- Long/Short-Range Dependence and Performance Measures

efficients has been focused mostly on a limited scope for FBM ntuitively, long-range dependence (LRD) can be considered
[63], [19], [42], [59], FGN [28], or AR(1) [14]. The correlation as a phenomenon that current observations are significantly cor-
structure has not been well studied for short-range dependgsiated to the observations that are far away in time. One formal
processes nor for a mixture of long- and short-range dependdefinition [21] of a long-range dependent stationary process can
processes. To apply wavelet models to networking related @@ described as that the sum of its correlation functid@n over
plications, [2], [1], [18] proposed to estimate Hurst parameteadl lags is infinite! This implies that the correlation function

by wavelet models. The possibility of using wavelets for mod«%) decays asymptotically as a hyperbolic functiontof.e.,

eling network traffic was mentioned in [48] and [17]. However,

wavelet apprQaCheS have not .been applied to modeling heterap|ease see [32], [21], [11], and [6] for other definitions and properties of the
geneous traffic when this work is developed [37], [38]. RecentlyRrD.

Il. BACKGROUND
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Fig. 1. (a) Haar wavelet basis functions. (b) Corresponding tree diagram and two types of operations. The number in the circle represents tisara-dime

index of the wavelet basis functions. For example, the equivalent notatifinie# . s, v(s) andy(s) represent the one-dimensional index of wavelet coefficients.
~(s) is defined to be the parent node of nade/(s) is defined to be the left neighbor of node

r(k) ~ O(k=C=2H)) for k > 0. H(0.5 < H < 1) is the wherej andm are positive integers. The dilation indgxhar-
so-called Hurst parameter, which is an important quantity facterizes the functiog(t) at different time scalesn repre-
characterizing the LRD. Examples of such long-range depesents the translation in time. Becaugg(t) are obtained by
dent processes include the FGN process and the fractional @ilating and translating a mother functigiit), they have the
toregressive integrated moving average process (FARIMA). Tegme shape as the mother wavelet and therefore are self-similar
nature of these random processes is “self-similar,” i.e., the c@s-each other.

responding statistical properties are invariant at different time A discrete-time process(¢) can be represented through its
scales [6], [11]. In particular, FGN is a Gaussian process, ajf}erse wavelet transform

can be completely specified by three parameters: mean, vari- . )
ance, and the Hurst parameter. FARI d, q)is afractional Y

differentiation of an auto-regressive%ving) average (ARMA a(t) = Z A ¢ (t) + ¢o @
(p, q)) process, whergandq represent the orders of the ARMA 7=t

(p, @) process andi(0 < d < 0.5) is a differentiation de- where0 < ¢ < 2K, ¢, is equal to the average valuexft) over
gree. The Hurst parametéf of FARIMA (p, d, ¢) equals to ¢ e [0, 2% — 1]. Without loss of generalityp, is assumed to be

0.5+d. FARIMA (p, d, ¢) hasp+q+3 parameters, and is muchzero for the rest of this papef?'s are wavelet coefficients and
more flexible than FGN in terms of simultaneously modelingan be obtained through the wavelet transform

of both long-range dependence and short-range dependence in

oK —7j_
7

=0

network traffic [6]. Examples of short-range dependent random . 271 .

processes include auto-regressive (AR) and ARMA processes dj* = Z w(B)py (t)- 3)

with exponentially decaying correlation functions, k) ~ t=0

P (=1 < p < 1). The mother wavelet we choose in this work is the Haar
The criteria that we use to measure the performance of tvavelet, where

wavelet models are the autocorrelation function and the buffer 1 ifo<t<1/2

loss rate. The autocorrelation function is an important quantity o) =4 —1 if 1/5 <t<l (4)

characterizing the second-order statistics of a wide-sense-sta- 0 otherwise. '

tionary process. If amodel is able to capture both LRD and SRD ) ) i
components in network traffic, it should be able to match the au- 10 €xplore the relationships among wavelets, Willskyl.
tocorrelation function of network traffic in a long enough rangélefines a tree diagram and the corresponding one-dimensional
The buffer loss rate is chosen as one other criterion, since an ifiices of wavelet coefficients [5], [35], [10]. Fig. 1(a) shows
portant goal for traffic modeling is to assist designing the buffé@n example of Haar wavelets féf = 3, and Fig. 1(b) shows

size of a servet,and estimating the packet loss rate. the corresponding tree diagram. The circled numbers represent
the one-dimensional indices of the wavelet basis functions, and
B. Wavelet Transformation are assigned sequentially to wavelet coefficients from the top to

Wavelets are complete orthonormal bases which can be ug%‘:'d bottom and the left to the right. The one-dimensional index

to represent a signal as a function of time [13].0%( R), dis- s 1S thus a one-to-o.ne mapping to the two-dimensional index
crete wavelets can be represented as (4(s), m(s)), wherej(s) andm(s) represent the scale and the
. . shift indices of thesth wavelet. The equivalent notatibof d,
¢ (1) =272 p(277t —m)

3For exampleds is d2 in the given example. (The shift indesx starts from
2This can be modeled as a single queue with cap&ciand a buffer sizé3.  0.)



MA AND JI: MODELING HETEROGENEOUS NETWORK TRAFFIC IN WAVELET DOMAIN

is thendf."is). In addition, we denote the parent and the neig!
boring wavelets of a wavelet through the tree diagram. As sho
in Fig. 1, v(s) andv(s) are the parent and the left neighbo
of nodes, respectively. We use both the one-dimensional ai
two-dimensional indices of a wavelet coefficient in this paper

A key advantage of using Haar wavelets is simplicity. Th_
computational complexity of the (Haar) wavelet transform arg
inverse transform i®(N), whereN is the length of the time
series.

Whenz(t) is a random process, which is of interest to thi
work, the corresponding wavelet coefficient$'’s define a
two-dimensional random processes in termg @ndm (see
[22], [63], [5], and references therein for details). Due t
the one-to-one correspondence betweét) and its wavelet
coefficients, the statistical properties of the wavelet coefficien _
are completely determined by those oft). Likewise, if
the statistical properties of the wavelet coefficients are well

Autocorrel

specified, they can be used to characterize the original random
process. This motivates our approach of traffic modeling l@/g&
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2. Solid line: Autocorrelation coefficients of the original process.
ed line: the normalized autocorrelation of wavelet coefficient, i.e.,

characterizing statistical properties of wavelet coefficients. (g(qrapt*) Joar o mir). (@) AR(1) process. (b) FARIMA (0, 0.4, 0)
process. 8

Il. WHY WAVELETS. CORRELATION OF WAVELET
COEFFICIENTS

One of the main motivations for using wavelets is their ability
to reduce the temporal correlation so that wavelet coefficients
are less correlated. In this section, we first provide (asymp-
totic) analysis on correlation structures of wavelet coefficients
for well-known LRD and SRD processes. We then provide em-
pirical studies to show that the correlation structures are domi-
nated by only a few key elements. This motivates traffic mod-
eling in the wavelet domain, and the simple wavelet models we
will choose in Section IV.

A. Analysis on Correlation Structure of Wavelet Coefficients
1) Correlation Structure of Wavelet Coefficients of LRD

mean-rever{0.5 < H < 1) in the time domain to the
mean-avert0 < H’ < 0.5) in the wavelet domain. Re-
call that the temporal autocorrelation of FGN decays at a
rate O(|k|~2(1—H)) for k being the lag, and is thus non-
summable. The above theorem indicates that the wavelet
transformation has changed the long-range dependence
in the time domain so significantly that the summation
of the correlation of wavelet coefficients converges to a
constant. Fig. 2 illustrates how drastic the reduction is
by comparing the autocorrelation function of the original
FARIMA (0, 0.4, 0) process to the corresponding auto-
corrilation function of wavelet coefficients (ofli* and

A7 r),

Processes:The correlation structure of (long-range dependent) 2) Correlation Structure of Wavelet Coefficients of SRD Pro-
FGN process has been investigated extensively in [28], [Gg}gss_es:Forshort—range (_jgpendent processes, we derive the cor-
[19], and can be applied to the problem we consider in thiglation of wavelet coefficients.

work.

Theorem 1: (Kaplan and Kuo [28]; Flandrin [19]):Let «(¢)
be a FGN process with Hurst paramef£f0.5 < H < 1). Let
d;*s be the (Haar) wavelet coefficientsoft). Then:

1) For a given time scalgj, dj's are ii.d. Gaussian

Theorem 2: Let z(¢) be a zero mean wide-sense-stationary
(discrete) Gaussian process with the autocorrelatibh where
r(k) = o?pl¥l with |p| < 1, k is an integer and? is the vari-
ance ofz(t). Letd’'s be the (Haar) wavelet coefficientsaft).
Then:

random variables with zero mean and variance 1) For agiven time scalg d}'s are Gaussian random vari-

2j(2H—1) (22(1—H) _
of x(t).

2) For(mi +1)2%t —m»272 large, whergi, jo, m1 andms
are the dilation and the translation indices of two different
wavelet coefficients, respectively, the correlation between
two wavelet coefficients is

E (d;T dff) ~0 (|2j1m1 - 2j2m2|72(17H,)) (5)

1)a?, where o is the variance

whereH' =1 - H.

ables with a zero mean and a variancgl + (2p/1 —
p) = (Bp/(1 = p)?27 1) + O(p* ).

2) Form;27t — (my +1)272 > 0

E(dd?)

J1 de
— 2(—11—12/2)p"112j1 —(mz+1)272

X (1 — p2j271>2 (1 — p2j171>2 ﬁa? (6)

Here|2j1 my — 292 ma| is the shortest distance between 41t can be easily shown that the time seri#s for a fixed j is stationary in

two wavelets, and greater than 1. The expongnrt,H’,
is between 0 and 0.5 sinde5 < H < 1 for FGN pro-

terms ofm. Therefore, the autocorrelation exists.

5No previous results exist on the explicit correlation structure of wavelet co-
efficients for discrete processes except the bounds for some of the continuous

cesses. This shows that the correlation changes from thedom processes [14].
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Fig. 3. Correlation matrix of FARIMA (0, 0.4, 0). Fig. 4. Correlation matrix of AR(1).

The sketch of the proof of the theorem is in Appendix A, anthe nodey*~*(s) with k£ being 1, 2, 3, 4 from the diagonal line.
the details are in [38], [36]. We then conclude that the most significant correlation is due to
This theorem shows that the correlation of wavelet coeffihe parent—child relationship. Since the complicated temporal
cients decays exponentially &2t — m,272|, and there- correlation concentrates on only a few key correlation patterns
fore remains short-range dependent in the wavelet domain.ihrthe wavelet domain, we can use a parsimonious model in the
fact, the decay rate is even faster than the corresponding omavelet domain to represent the original traffic.
relation in the time domain due to the “differencing operation”
performed by the Haar wavelet transform. Fig. 2 illustrates the V. GAUSSIAN WAVELET MODELS

decay rate by comparing the (temporal) correlation for an AR(1) We begin developing the wavelet models from the traffic with

process with that of its wavelet coefficient for = jo = 1. : N . .
. o aussian distribution, for which we only need to characterize
The above investigations suggest that a complex short- angfor : .
. : . he autocovariance function through the wavelet models.
long-range dependent process in the time domain may be suf-

ficiently modeled by a short-range dependent process in tRe
wavelet domain. That is, simple models which are insufficient’
for the temporal process may be accurate when used to mode{Ve capture the short-range dependence among wavelet coef-

General Markov Models in Wavelet Domain

the wavelet coefficients. ficients using Markov models. Such Markov models can be im-
plemented through a linear model on wavelet coefficients [5],
B. Empirical Studies on Correlation Structure wheré
of LRD and SRD s—1
What short-range dependence needs to be captured among ds = as(1)dy 4 bsw. (1)

1

wavelet coefficients? Unfortunately, an answer to this question !

cannot be provided by Theorems 1 and 2, since they only h‘?—'@re,as(l)(l < 1< N)andb, are weighting factors depending

Iﬁr |(mﬁ N 1)2.]1 —tm2L2)]2'| large. Vl\/e th?hs aofldFrzzs”\zfxs (')SS(;J n the one-dimensional index andw, is i.i.d Gaussian noise
rough experiments. Using sample paths o ©, "Wwith zero mean and a unit variance.

0) and AR(1), we obtain the corresponding correlation matrices.l.he order of the Markov modes, can be chosen to make a

zf vya\/lel?t ]: ogfﬂuepts plotted in Fltgsihg and 4| tr.ESpsC:'VeIYradeoﬁ between model complexity and performance. Since our
h p}bxs (L’d Z]E'}z ﬁm |ma|ge rep;fgsgn S ehc?rre gllon ehwe pirical study has demonstrated the regular patterns of the cor-
the«th and theith wavelet coefficients, whereandk are the o 40n structure for a wide range of SRD and LRD processes,

onerlmensmnaI |nd|c_es shown in Fig. 1. T_he gray Ieyel IS P'Qe can choose accordingly to capture several strongest corre-
portional to the magnitude of the correlation. The higher tnStions and ignore the insignificant ones

magnitude of the correlation, the whiter the pixel in the image.
These figures show that in addition to the diagonal fiteere g
are four pairs of lines having “visible” correlatigrirhey corre- . ) i
spond to the correlation betweefi(s) ands, where~(s) rep- The simplest model is the independent wavelet model when

resents the parent of the node@nd~*(s) denotes the parent of IS chosen tobe 1, and(l) = 0for all .. This corresponds to the.
case thatl]'s are independent Gaussian random variables with

6in order to have enough gray level to see more subtle details, the diagoparo mean and variancej. o, can be estimated from data at
pixels, which is always 1, is set to 0.5.

We only considefk’ = 5 which has only five levels in the tree diagram. 8Here we assume causal relations among wavelet coefficients.

Independent Wavelet Model for Gaussian Traffic
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2 ' ' ' ' ' wherea’(j(s)) and¥’ (j(s)) are the parameters to be determined

from a training sequence, is the one-dimensional index of
a wavelet coefficient, ards) is the scale index 0. w; is

13r + AR .o-% Gaussian noise with zero mean and the unit variance. This is

o a special case of (7) for all;(I)s to be zero except;(v(s)),
R wherey(s) is the parent node af The resulting correlation pat-
tern of this wavelet model consists of the diagonal line and the
.| nextbrightest off-diagonal line in Figs. 3 and 4. Markov wavelet
e models with even higher orders can be used to capture more cor-
, relations among wavelet coefficients, and can be implemented
L% in a similar manner.

0: FARIMA(1,0.4,0)

*: FARIMA(0,0.4,0)

e
o
T
1

* +

log2(Variance of d_j)
(54
T
+ e}
*
%
1

+aQ

or . R 1 D. Algorithm for Developing Wavelet Models and Generating
Synthetic Traffic

O+ X

Once the form of a wavelet model is chosen, two issues need
o 2 4 s s 10 12 to be considered: 1) how to obtain parameters of a wavelet
Time Scale j model from a training sequence; and 2) how to generate
synthetic traffic from the obtained model. The algorithm given
below implements these two tasks. Assume a training sequence

. . . 2(t) of lengthV is given from a Gaussian process.
eachj independently. This model only characterizes the meanagorithm:

and the variance of individual wavelet coefficients, and com- . R
letely neglects the interdependence among them Thereforel) Estimate parameters froaf?).
pietely neg P 9 ' ’  Perform the wavelet transform arft) to obtain the

the resulting correlation is . L )
corresponding training sequence of wavelet coeffi-
cients,d;'s.
» Estimate the required parameters in the selected

) wavelet correlation model (Section V) froaf}j‘s.l0
How can the independent wavelet model represent LRD/SRDZ) Generate synthetic traffic.

Fig. 5. Log 2 of variance of ; versus the time scalg

) B div = io — i
B(dmdmey = { %5 M =maandi=j:=j (g
( 1 g2 ) {0, otherwise. ®)

processes in the time domain? To provide answers to this ques- « Generate coefficientg™ from the wavelet correla-
tion, Fig. 5 plots the variances of wavelet coefficients from an tion model using the ostimated parameters fonall
independent wavelet model for several well-known processes: a and;.

long-range dependent FARIMA (0, 0.4, 0), a short range depen- « Perform the inverse wavelet transform to the gener-
dent process AR(1), and a mixture of long-range and short-range ated wavelet coefficientsif’s). This results in the
dependent process FARIMA (1, 0.4, 0). synthetic traffic in the time domain.

The figure shows that variances of the three processes eXhibiEfﬁciency of traffic models can be measured through two
different behavior. In particular, the variance of LRD increasggantities: 1) the computational time needed to develop a model
with j exponentially for allj. Intuitively, this is due to the fact using a training sequence and to generate synthetic traffic;
that the statistical variation of a LRD process persists througf4 2) the number of parameters of a model. In particular, the
all time scales. The variance of SRD first increases rapidly ghyelet transform, the inverse transform, and the parameter
small time scalgj, but saturates whep is large. This is be- ggstimation for the wavelet models are all linear [13]. Thus, the
cause that the statistical variation of SRD processes only P85mputational time i©( V) for developing a wavelet models,
sists at small time scalég-or a mixture of LRD and SRD, the 4 O(M) for generating synthetic traffic of lengthf. As a
variance shows the mixed behaviors from both SRD and LRPomparison FARIMA require©(N?) for estimating param-
These plots suggest that the variances of independent wavg|gts: using a training sequence of lengif, andO(M?2) for
coefficients are capable of distinguishing LRD from SRD fogenerating a synthetic trace. In terms of the actual computing

Gaussian processes. time, it usually takes at most a few minutes on a Sparc station
to develop a wavelet model and to generate a trace of length
C. (Low-Order) Markov Wavelet Models 218 whereas a FARIMA model needs at least several hours to

The next simplest model is the first-order Markov modekomplete the same task. _
which captures the parent—child relationship, the most signifi- As for the number of parameters of a wavelet model, an inde-
cant correlation among wavelet coefficients as shown in the pgendent wavelet model has at mbsg [V parameters for mod-

vious section. Specifically eling a training sequence of lengfti. An nth order Markov
. . wavelet model has aboyk + 1) log N parameters (in this
ds = a'(j(s))dy(s) + V' (3(5))ws 9 work,n = 1, 2, 3).

9As an extreme case, the variance of an i.i.d. temporal process, which includes ) )
Poisson-type processes and i.i.d. Gaussian processes, the variances of the cofor example, for the independent wavelet model, the sample variances of
responding wavelet coefficients do not vary with respect to the time scale at@velet coefficients are estimated.
[47], [62]. 11Through maximum-likelihood estimation.
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V. NON-GAUSSIAN INDEPENDENTWAVELET MODEL for > 1 and integer ofn. By comparing this equation with the
dgfmmon of cumulative procesk;(s) [see (10)], we can relate

As heterogeneous network traffic often possesses
Jg scale coefficient]" to the cumulative procesk;(s) as

non-Gaussian distribution, we extend the Gaussian wave
models to non-Gaussian traffic. The key idea is to shape the vt = 279/2X, i (2). (14)
distributions of synthetic traffic at multiple time scales. To

motivate this approach, we first discuss the relationships amdfgother words, a scale coefficienf" is simply the weighted
queueing behaviors, time scales, and wavelets. We then presétaulative process over the interyal2’, (m+1)2/ — 1] with

our algorithm. a lengths = 2/ and a starting point = m2’.
The scale coefficient can be further related to wavelet coeffi-
A. Time Scale and Buffer Overflow Probability cients through the recursive relation [see (12)] as
What should be modeled to accurately predict buffer overflow K
probability? Queueing analysis shows that the marginal distri- vt = Z wrdy™* + wr v, (15)
bution of the cumulative process of traffic at the critical time k=j+1

scale is crucial for determining the buffer overflow probablllt)ovherewk — 9—(k—i/2)

[15]. 8], [9]. scale coefficient at the coarsest time scale. Finally, combining

To briefly review thesg results_m thellarge Qewa'uon theor¥15) and (14), wavelet coefficients can be related to a cumulative
we let C be the capacity of a single first-in-first-out (FIFO)process through scale coefficients

buffer with an infinite waiting room(), be the buffer size at
time ¢, and B be the threshold for the buffer overflowg, is
known to satisfy; = sup,~,(X:(s) — cs) [29], whereX,(s)

is a weighting factor, and?- is the

C. Time-Scale Shaping Algorithm

is the cumulated process of a work loagt) Us_in_g the relationships among wavelet coefficients, sca_lle
1 coefficients, and the cumulative process, we can now derive
Xt(s):Za:(tJrj) (10) our shaping algorithm for non-Gaussian traffic. The key

idea consists of the following: 1) generating the so-called
background wavelet coefficients by Gaussian wavelet models
The buffer overflow probability has shown to satisfy [15](Section IV.'[.)); 2) compu_tir_lg the empiri?al distribution_s of
[45], [8], [9] Scale coefficients of a tra_|n_|ng sequence; and 3) shaplng_the
background wavelet coefficients so as to match the empirical
Pr(Q: > B) = Pr(Xy(s") > cs + B) (11) distributions of the scale coefficients.
where s* is the so-called critical time scale, and = The idea can be implemented through a top-down procedure,
arg sup,»; Pr(Xi(s) > cs + B). This approximation has i-€., the background wavelet coefficients are shaped from the
been shown to be valid asymptotically (for large) for a coarsestto the finest time scales. Spemﬂcallyd{étanddm be
wide range of traffic including the long-range dependerii€ unshaped and the shaped wavelet coefficients athiteme
FGN process [15]. It has also been shown to be a reasona¥fiale, respectively. Assume that the shaping has been done from
approximation even for a moderate buffer size with varioie coarsesti(th) to the [K — j + 1)th] time scale. At step,
traffic loads [8], [9]. we fix the following: d}*s for allm andK > k > K — j +1,
An important implication of the above approximation is tha@ndo _; [related tOdm through (15)]. Our objective at stgp
the tail distribution of the cumulated process at the critical tinié t0 transform the (unshaped) wavelet coefficiéfit_; to the
scale determines the buffer overflow probability. Therefore, shaped wavelet coefficienty ; SO as to match the empirical
accurate traffic model should capture the tail distribution of thdstribution of the scale coefficient§? _;_;s. To do so, we de-
cumulated process of the original traffic at the critical time scaline an intermediate variablgg ; (1/\/_)(d§ 5+ UR_)-
However, the critical time scale depends on the bufferBizae  We note that if an appropriate transform can be applietjto.,
capacityC, and the utilization. Therefore, in order to perfornthenz}? . would become the new scale coefficieﬁf}'ij_1
well under a wide range of conditions, a traffic model shoulee (12):2 whose desired distribution can be computed by the
match marginal distributions of the cumulated process at a witteining sequence at scalé — ;5 — 1. Hence, we obtain

range of time scales. . .
W=V (B (GRo)) -9 (16)

K]l

7=0
ands represents the period for cumulation.

B. Time Scales and Wavelets S )
here Fzm (-) represents the distribution of the scale coeffi-

The time scale has a natural relationship with waveletéent at scale — j — 12 and can be estimated through the
Specifically, as given in [39], the (Haar) wavelet coefficient
can be related to the so- called scale coefficients by ﬁ|stogram [57], [26] of training traffic using (14).

om 128y (12), 57 _;—1 needs to be obtained to march the marginal of a cumula-
vy = \/— (dn+1 + U1+1) (12)  tive process. But from (13%_,_, = (1/vV2) (0%, + o375 "). Therefore,
eitherv3™ . or uQm*‘ can be chosen arbitrarily for shapmg in order to match a
where the scale coefficient” is defined as desired marglnal with that of a cumulative process. We choose to sfiape
; in this work.
—i/2 (mt1)2°—1 B3We assume that7 , for a fixed j has the same distribution for different
vt =27 Z x(t) (13) m. Thisis true for stationary traffic. Therefore, the distributionvg®} can be

Y estimated through a histogram-af: , for a fixed ;.
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To understand what transformatiéi= (zj7_;) is, we note
that for an independent wavelet modeijn is mdependent of

;. This is because;™ only depends on wavelet coefficients

at time scales larger thgn Therefore, we have
Fm, (7K - j) :de (d}? j)
wheredy}_;
wavelet coefficients,
oy
tion f]unctlon ofdg_; givenuvie_,

Fym ,(zm) :de Sl ](d}? j)'

Such a conditional distribution is difficult to estimate empiri-

(17)

is a Gaussian random vanable determined by tt
wavelet model. For Markov wavelet models with depende
the cumulative distribution functior
(#i_;) is equal to the conditional cumulative distribu-

(18)
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-Fig. 6. Experimental setup.

cally. Therefore, the transformation for the independent wavelet

model [see (17)] can be used as an approximation.
Combining (16) and (17), we have
K- - = \/_F . (de ( }?—j))

~m
VK — —j"

(19)

VI. PERFORMANCE OFWAVELET MODELS. NUMERICAL

INVESTIGATIONS

In this section, we report numerical investigations on the per-
formance of the wavelet models, where the performance for

From the shaped Wavelet coefncmf}'f the shaped scale coef-modeling Gaussian traffic is measured by the autocovariance

ficient can be obtained as

1
~2m U
Vg j— 1—%( ;T U J)

(20)

It can be verified that the (shaped) scale coefficiefit: ;1 has

indeed the (targeted) distributid} 2 1(-)

The above procedures can be ‘Summarized by the followi

algorithm.

Time-Scale Shaping Algorithm
Input: a training sequence (network
traffic) Z(t). Output: synthetic traffic
#(t) or model parameters (wavelet coeffi-
cients,  d”s)

e Traffic modeling
1. Do wavelet transform on the training
sequence i(t) to obtain wavelet coeffi-
cients  d's and then scale coefficients
o7's [see (15)].
2. Estimate the variance
coefficients
3. Estimate the cumulative probability
function of scale coefficients,
at each time scale j using a training
sequence on the cumulative process
X2 (29).

e Synthetic traffic (or the model parame-
ters) generation
1. Generate background (Gaussian)
wavelet coefficients dj' from a wavelet
correlation model.
2. Recursively compute the (shaped)
wavelet coefficients d?‘ [(16) and (19)]
and scale coefficients ;-1 [see (20)]
from ;57 =K to 1 for all m.
3. Do wavelet inverse transformation and
obtain the synthetic traffic Z(t).

af of wavelet

F;

14

14which can be obtained by aggregating the original training sequence at

various time scales.

dm at each time scale j.

5 ()

function, and that for modeling non-Gaussian traffic is mea-
sured by the buffer loss probability. The results on modeling
Gaussian traffic are verified using training sequences generated
from known processes, and those for non-Gaussian traffic are
validated using real network measurements.

A9 simulation Setup

The experimental setup we use is shown in Fig. 6. A trace
z(t) is fed into a traffic model for estimating parameters of a
wavelet model. The model obtained is then used to generate syn-
thetic trafficz’(¢). The original and synthetic traffic traces are
then used to obtain empirical autocovariance functions and the
buffer losses probabilities, which are compared to measure the
performance of the wavelet models. A FARIMA model is used
similarly to further compare with the performance of the wavelet
model. Both the sample autocorrelation functions and the buffer
loss probabilities are obtained and compared with the true au-
tocovariance functions and the buffer loss rates. The results for
wavelet models are averaged over ten random sample paths.

B. Performance on Gaussian Traffic

The performance of three types of wavelet models are investi-
gated, which are independent wavelet models and the first-order
and the third-order Markov wavelet models. A sample géth
of length 16—1C° is generated from either an AR or a FARIMA
model. As various model parameters are used in our simulations,
we report results in this paper based on two representative cases:
a short-range dependent process, AR(1) with an AR parameter
0.9, and a mixture of both SRD and LRD processes, FARIMA(1,
0.4, 0), with an AR parameter 0.9 and the Hurst parameter 0.9.

Figs. 7 and 9 show the sample autocorrelation functions for
AR(1) and FARIMA(1, 0.4, 0); and Figs. 8 and 10 plot the buffer
loss rates, respectively. To examine further the performance of
each wavelet model, we plot the mean square error (MpE
between the original autocorrelation and the one from a wavelet
model summing up to a lag, where

P

MSE(r) = % 7 (r(k) — #(R))*

k=1

(21)



642

0.9 i
0.8f! .
07 i
c
2 5
5] 2
° 0.6 i %
305 1 £
2 2
© 2
30.4 1k
£ %]
©
(/2]

o
w

80

90

100

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 5, OCTOBER 2001

0.1

50

100

150 200
Lag

250 300 350 400

Fig. 9. Sample correlations. — : FARIMA(1, 0.4, 0) (the true autocovariance

Fig. 7. Sample correlations. —: AR(1) (the true autocovariance function); “fuinction); —. : third-order; - -: first-order; ... : independent wavelet model.

third-order Markov wavelet model; —. : first-order Markov wavelet model,; ...
independent wavelet model.
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Loss Rate vs. Load
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Fig. 10. Buffer response. x-axis: utilization. y-axidog 10(overflow

Offer Load probability). — : FARIMA(L, 0.4, 0) (the true buffer loss rate);—. : third-order
. . o . Markov wavelet model; - -: first-order Markov wavelet model; ... : independent
Fig. 8. Buffer response. x-axis: utilization. y-axislog10(overflow \yavelet model. The normalized buffer size is 0.1, 0.5, 1, 10 from top down.
probability). — : AR(1) (the true buffer loss probability); - - : third-order
Markov wavelet model; —. : first-order Markov wavelet model; ... : independent

wavelet model. The normalized buffer size is 0.1, 0.5, 1, 10 from top down. two-hour movieStar Wars The other is an Ethernet data trace

used by Lelanet al.[33].15 The data set records the number of
Figs. 11 and 12 ploMSE(7) for AR(1) and FARIMA(1, 0.4, bits for every 10 ms during the half hour collection period. The
0), respectively. length of this training sequence is 176 000.

As observed from the figures, the independent wavelet model An independent wavelet model is used and the time-scale
which neglects all the dependence in the wavelet domain, pehaping algorithm developed in Section V are applied.
forms reasonably well. Markov wavelet models which captufARIMA(25, d, 20) model is used for comparison, where
more correlations among wavelet coefficients improve the pdfARIMA(25, d, 20) has 25 AR parameters and 20 MA pa-
formance only marginally. rametersé The algorithms used for FARIMA to estimate

its parameters and to generate synthetic traffic are from a
C. Performance on Real Network Traffic commercial software package, Splus [58]. As the two training

The performance of the independent wavelet model and tpguences have non-Gaussian marginal distributions, the
time-scale algorithm is investigated in this section using re@¢nerated Gaussian traffic by FARIMA is further transformed
network traffic. Specifically, two widely used traffic traces aré!sing a standard method [26] so that the resulting synthetic
used. One is JPEG-codegtar Warsat the frame level [21]' 15\e only report results on the data set collected in August 1989.

The trace is Obtained_by applying a JPEG-like encoder to eaCI57'5FARIMA(25, d, 20) is selected by compromising performance and com-
of 171000 frames at intervals of 1/24 second per frame of thiexity through multiple trials.
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VIl. PERFORMANCE OFINDEPENDENTWAVELET MODELS:

) . . o . ANALYSIS
traffic has a desired marginal distribution as estimated from the

real trace. One observation from our empirical studies is that indepen-
Figs. 13 and 16 plot the autocorrelation functions resultirdent wavelet models are rather accurate measured by both the
from the FARIMA(25, d, 20) and the wavelet model for botlautocovariance function and the buffer overflow probability,
traces, respectively. These figures show that the wavelet modetl the Markov models which include additional dependence
has a comparable performance to that of FARIMA in terms @ily improve the performance marginally. This motivates us to
modeling the second-order statistics. Figs. 14 and 15 give thefigther access the performance of independent wavelet models
sults on the buffer loss probabilities for both traces, respectivellirough analysis. We focus our analysis in this work on a lim-
As observed, the performance of the wavelet model resultiitigd case when independent wavelet models are used to model
from the time-scale shaping algorithm is comparable to that afi FGN process. An FGN process is of the particular interest,
FARIMA(25, d, 20) at small buffer sizes but is much improvedince it is the only long-range dependent process with an
at large buffer sizes. This shows the importance for the wavesplicit autocorrelation function. In addition, the independent
model and the time-scale shaping algorithm to match the namavelet model of an FGN process can be expressed explicitly
Gaussian marginal distributions of the cumulative process af28]. This makes it possible for us to analyze the corresponding
wide range of time scales. buffer overflow probability and the autocorrelation explicitly,
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and compare with those of the original FGN process given in LetPr(B,. > B) denote the buffer overflow probability due

the prior work [15], [46], [43].

A. Definitions and Notations
Let Z(¢t) represent an FGN process, x(t) is a random

to the independent wavelet model at time-glavhere

Pr(B,: > B)=Pr <Sl;p(th($) — sc) > B) . (26)
s>1

process resulting from the (Haar) independent wavelet modgincex,,(¢) is nonstationary [63] as mentioned in the previous

where

K =)

Tur () =D > d7¢R(D).

j=1 m=0

(22)

t > 0,andK represents the limited resolutiafi*(¢) is a (Haar)

sectionPr(B,,: > B) varies witht. Therefore, to have a mean-
ingful buffer loss rate of the independent wavelet model, we de-
fine the average buffer overflow probability as

_ 1 T—1

Ly (B) = lim — > Pr(Bu: > B).

t=0

(27)

wavelet B‘f‘_Sis function with ascale indgx 1, and ashiftindex gince an FGN processiis a stationary process, its buffer overflow
m > 0.d}" is anindependent Gaussian random variable def'”ﬁpobability,LFGN(B), is

in (8). Letx,, (t) be the limit? of =, x (¢) with respect td¥, i.e.
(23)

Tw(t) = Aligéo Tk (F).

Since z,,x (t) is a cyclostationary rather than a stationar
process [63], we need to define the average buffer overfl

probability of the independent wavelet model.

B. Average BuffeOverflow Probability

Consider a discrete time queue with an infinity buffer and thBW
capacityc. z,,(¢) andz(¢) are fed into two such queues at the i«

beginning of a discrete time slofor ¢ > 0, Let B, andEt be
the buffer sizes at the end of thth time slot due tac,,(¢) and
Z(t), respectively® where

Bt = Sup(th(S) - SC) (24)
s>1
and
B, = sup(X;(s) — sc). (25)

s>1

X.(s) and X .(s) are the cumulated proces,.(s) =
Sise wult— 1), andXy(s) = g @t — ).

17Assume the limit exists.

18As the subscripte represents for the wavelet model,.(¢) corresponds
to the synthetic traffic from the independent wavelet model, Bqad is the
corresponding buffer size.

Lren(B) = Pr (R > B) (28)

for any positive integet. The average buffer overflow proba-
%ility of the independent wavelet model for an FGN process can

%’en be derived and compared with the true value as shown by

the following theorem.

Theorem 3:When the buffer sizeB goes to infinity,
the buffer overflow probability of the independent model,
r(B), and that of the original FGN processygn(B),
fies

lim log EWL(B)

. 1
= k(}linoo e log Lran(B) (29)
_r 1 ON2UH) g\ 2H
c— H
- 202(1— H)? (30)
for
_ ko(1 —
o e= 21— H) a

H

whereH (0.5 < H < 1) is the Hurst parameter of the FGN
process, and, is a positive integer.
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This theorem shows that when the buffer Si2&s assumed to

be a subset of all possible values, and is large, the indepeng | ..+ ¢1(H) for lower bound .
wavelet model is asymptotically close to that of the origin: /e
FGN [15], [46]. In other words, the independent wavele’8| =+ c0(H} for FGN g ]

model can faithfully capture a long-range dependent FGC,,|
traffic. Therefore, the result shows, in this special case, t

capability and performance of the independent wavelet modo.6
as well as the feasibility of using the model for queue analys

Meanwhile, we would like to note that even for this specieo'5
case, the proofs of the theorem involve elaborate analysis. b .4
difficulty is due to the cyclostationarity of the independern

wavelet model [63] which leads to the time-varying buffe®3[
overflow probability. This is, in fact, the consequence of usin, ,|
an independent wavelet model by ignoring all the depender

in the wavelet domain. As the result, techniques such as .1
large deviation cannot be used directly, and the lower and upj . . . . . . ‘ .
bounds have to be derived for the average buffer overflcass 08 o0es 07 075 08 08 09 095 1
probability. The main idea of the proof is given in Appendix B

—-: c2(H) for upper bound a 7

Fig. 17. x-axis:H. Solid line: ¢o(H). Dashed lineicz(H). Dotted line:

and the details can be found in [36]. e (H).
C. Average Atocorrelation Function and
The performance of independent wavelet models can be fur- eo(H) = f(o; H) (39)

ther evaluated through the autocorrelation function. To deal with

cyclostationarity of the independent wavelet model, we needwherea™ = (—(2H — 3)p2)/((2H — 2)p1).

define the average autocorrelation function. Specifically, let the The proof of Theorem 4 is in Appendix C. To understand the
average autocorrelation function of the resolution-limited indéesults given by the theorem, we recall that the autocorrelation

pendent wavelet model be function of an FGN process is [40]
1 & Rran(r) = 5(Ik + 127 = 2[k P + [k + 1) (40)
RI& = T Z .’ij]g xw[((t + T)) (32) ICO(H)|7_|2H72 + O(|7_|2H73) (41)

whereco(H) = H(2H — 1). The performance of independent

The limit defines the average autocorrelation functior @,° : X
wavelet models measured by autocorrelation functions can then

where
be evaluated by comparing (34) with (41). The theorem (34)
R(r) = lim R, _, (7). (33) shows that the average autocorrelation function of independent
Koo wavelet model decays hyperbolically. This demonstrates that an

Using the variances? of the independent wavelet model forindependent wavelet model is capable of modeling long-range

FGN process (see Part 1 of Theorem 1) in (33), we can deriependence in network traffic. In addition, the rate of decay

the following theorem. (O(|7|*—2)) for large lags is the same as that of the autocor-
Theorem 4: The average autocorrelation function of the inrelation function of the original FGN process. By further com-

dependent wavelet model for an FGN process is bounded byparing the constante,(H) with ¢;(H) and co(H) shown in
ol 2 N Fig. 17, we can examine the difference between the autocorre-
cl(H)l7| < R(7) < e2(H)|7| (34)  Jation function of the independent wavelet model and that of the

where0.5 < H < 1is the Hurst parameter; (H) andc;(H) original FGN process. Specifically, the relative difference be-

are defined by a functiofi(«;; H), where tween the constant(¢:(H) — co(H))/co(H )| and|(c2(H) —
. S co(H))/co(H)|)is plotted as a function of Hurst parametein
flag H) =" "p1 + a7 pa. (35)  Fig. 18, and shown to be no more than 15% between the average

autocorrelation function of the independent wavelet model and

andp, are
4 D2 that of the FGN.

pr=2-220"1 (36)
g VIII. DISCUSSION
an
S A. Performance and Efficiency of Wavelet Models
3(1 — 274~ .
pp=220-H) % (37) Why do independent wavelet models perform so well even

when they neglect all the dependence in the wavelet domain?
Then Intuitively, the (deterministic) self-similar structure of wavelets
epal is a natural match to the statistical self-similarity of traffic. As

cu(H) = f(1; H) (38) wavelet basis functions have “absorbed” the long-range and

19Assuming the limit exists. short-range dependence by differencing the averages at all time
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dence are no longer long-range dependent. Therefore, simple
models can be developed in the wavelet domain. In this work, we
have investigated thoroughly the independent wavelet model,
the simplest wavelet model. In that, we have shown that they
are capable of characterizing both long- and short-range depen-
dent (temporal) processes through variances of wavelet coeffi-
cients at different time scales. We have derived autocorrelation
functions and the queue loss rate using the independent wavelet
model for the case of FGN traffic. Further, we have developed
1 Markov wavelet models which capture the dependence among
wavelet coefficients. We have compared the performance of the
1 independent and Markov models, and show that independent
_ wavelet models are sufficiently accurate and Markov wavelet
\ 1 models only improve the performance marginally. Finally, we
have developed a time-scale shaping algorithm that extends the
(Gaussian) wavelet models to non-Gaussian traffic. The algo-
rithm shapes traffic at different time scales by exploiting rela-

] ) o ) tionships among (Haar) wavelet coefficients, scale coefficients,
II?(?('Hl)SBI— exz?l); )SI:/Ii(fIC)’I.Id line: feo(H) — er(H)|/co(H). Dotted line: 54 the cumulative process. We also have demonstrated that the
wavelet models are parsimonious, and have the lowest compu-

- tational complexity achievable.
scales, the wavelet coefficients are short-range dependent. Thig possible future direction is to extend our initial (queue and

makes it possible to model wavelet coefficients as independepfocorrelation function) analysis to a more general setting. An-
(or low-order Markov dependent) random variables withoiher issue of interest is to better deal with the nonstationary na-
losing much information. The resulting wavelet model is thergge of the independent wavelet model, which we have discussed
fore simple and parsimonious. In addition, since there exist fagimewhat in this work. Other issues of interest include how to

algorithms for both wavelet transforms and inverse transforraﬁmy wavelet models as well as the concept of time scales to
[13], our method is able to achieve the lowest computationgdsist network design, control, and management.

complexity in developing the model and in generating synthetic
traffic.

0.14f L T 1

o.12r J

0 | . | |
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.85 1
H

APPENDIX A

B. More on the Related Work PROOF OFTHEOREM 2
In signal processing, [4], [5], [35] have established a general ] o

framework for multiscale representations of a random procesd>"00f: Since the proof of Theorem 2(b) is similar to that of
through the dyadic tree. [63], [19], [42], [59] have shown thed(®), In this appendix, we only sketch the proof of 2(a).
wavelets can provide compact representations for an FBMSINCe z(t) is stationary and;" is obtained through the
process. Moreover, it has proven [63] that the spectrum of th@Vvelet transform which is linead;" is stationary in terms of
independent wavelet model of an FBM process is very cloge Without the loss of generality, we only need to consider
to that of 1/ processes. Therefore, the independent wavefgfom definition of Haar wavelet coefficients, we have
model has been proposed to rapidly generate FBM or FGN-like
synthetic sample paths. But the previous investigation (Ym‘(d?)
(asymptotic) correlation structure of wavelet coefficients has ; 7
been focused mostly on a limited scope for FI3M [63], [19], — 9—ig 2(t) — Z 2(t) (42)
[42], [59], FGN [28], or AR(1) [14]. The correlation structure
has neither been well studied for short-range dependent pro- -
cesse® nor for a mixture of long- and short-range dependent ' 211 21
processes. Since network traffic has both short- and long-range= 2’ E () =) | + Z (z(t) — 1)
dependence, we have extended the previous work to a broader t=0 t=27"1
class of Gaussian processes in order to study correlation struc- (43)
tures. Wavelets were also used to estimate Hurst parameters
[2], [1], [18]. The possibility of using wavelets for modeling
network traffic was mentioned in [48], [17]. - Z Z 2(x(ts) — p)(a(t2) — 1)

t1=0 t,=2i-1

29711 271

IX. CONCLUSION (44)

This work is motivated by the fact that wavelet coefficients

network traffic with complex long-range and short-range dep O'f'hrough straightforward algebraic manipulations (see [38], [36]

en- .
Por details), we can compute the two terms of (44), and thereby
20Bounds but not the actual correlation function were derived in [14]. prove the theorem.



MA AND JI: MODELING HETEROGENEOUS NETWORK TRAFFIC IN WAVELET DOMAIN 647

APPENDIX B
MAIN IDEA OF THE PROOF OFTHEOREM 3

As the buffer loss probability of independent wavelet modefs
is defined in the average sense to account for the nonstati6h<,
arity, the proof of Theorem 3 involves comprehensive analy
to bound the average loss rate. Here, we provide the main |dea

of the proof. More details can be obtained in [36], [38].
Since proving Theorem 3 is equivalent to proving that

hm log Ly 1. (B) < hm log Lrgn(B)

(49)

1
no B2(1—H) B2(1 H)

and

lim

dim sy leg Lwe(B) 2 lim

A, g 108 Lren(B)

(46)

whereB is defined by (31), we need to show (45) and (46) hol%

respectively.

Note that the buffer overflow probability [see (26)] can b

generally lower bounded [15], [60] by

Pr <SupXt(s) > cs+ B) > sup Pr(X;(s) > ¢cs + B)

s>1 s>1
(47)
and upper bounded by the union bound as
Pr <supXt(s) > cs—l—B) ZPr ) > es+ B).
s>1
(48)

For an FGN proces®9 (5 < H < 1), Duffield [15] has shown
that the upper and the lower bounds of the buffer overflow prob-

ability are asymptotically close to each other. That is

Bh_l}éo JZEeE) log Lran(B) (49)

1 >/ ok *
= Blgréo m logPr (X(s ) > es™ + B) (50)
= 13'11—1>Icl>o m log z_:l Pr (X(s) >cs+ B) (51)

) 1 21-H) ,q _ g\2H

Cl DN p 7

=- (52)

202(1 — H)?

Since X,(s), the cumulative process of the independent
wavelet model, is a Gaussian random variable for fixeohd
a key step for us to derive the theorem through proving (53)
d (54) is to derive the variance &% (s), and relate it to that

FLXe ().

@ecause’(t( s) is a function oft, our proof contains two main
steps. The first step is to show that the conclusion holds for the
special time slotV — 1 (N = 2% and K is a large integer).
This can be done through deriving the wavelet representation of
Xn-1(s) and calculating the variance &fy_; (s). The second
step is to relate the variance &f;(s), for anyt > 0, to that

of Xnx_1(s). The proofs for these two steps are done mostly
through algebraic manipulations, and are lengthy due to the non-
stationary nature of independent wavelet models. (Please refer
[36] for details.) Intuitively, because wavelets provide the multi-
scale representation of a signal [39], which in our case is traffic,
the cumulated processes resulting from the independent wavelet
odel X;(s)s are equal in probability to the cumulated process
of an FGN proceth( ) at special set afands. This results in

The fact thatX,(s) is very close taX,(s) for the rest oft ands.

We prove that the above intuitions are true in [36], and therefore
prove the theorem.

APPENDIX C
PROOF OFTHEOREM 4

To prove the theorem, we first need to derive an expression
for the average autocorrelation function.

Inserting the wavelet representationQfy (¢) definedin (22)
into (33), we can obtain through some algebraic manipulations

K
=Y o3hy(r) (55)

j=1

where
37
1- 7 0<7<T;/2
hi(T) = 56
i(7) <%_1> T/2<r<T (56)
J
0 otherwise.

o; represents the variance of wavelet coefficients of an FGN
process and is given in Theorem 1 as

o2 — 9i(2H-1) (22(1—1{) _ 1) )

Then the average autocorrelation function [see (55)] of an inde-

(57)

wheress = argsup,. o Pr(X(s) > ¢s + B) is the so-called pendent wavelet model for an FGN process is

critical time scale [45].
Therefore, to prove (45), it is sufficient to prove that

Pr(X(s) > cs+B) < Pr (Xt(s) > cs+ B) (53)

for all integerst ands, and using (48) and (51). On the other
hand, the lower bound [see (46)] can be obtained through (4707

and (50), if we can show that
Pr(Xi(s*) > es* + B)="Pr (Xt(s*) > st + B) (54)

wheres*
tain conditions onB andt.

is the critical time scale of the FGN, holds under cer-

(58)

R(r) = i (2201 —

j=1
Letk = |log,(7)] + 1. Replacingh;(7) by (56), we have

)= (22(1—H) _ 1) <2k(2H—2) (22(1—H) _ 1) (;_k _ 1)
+§ﬂmqk%>

j=k+1
(59)

1) i RH=2)p (7).
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_ ok(2H—2 201—H T 201—H [3]
—k2H=2) [ 9 _ 92 >+§ 221=H) _q

3(1 - 2-20-H) 4l
_ 3 ). e
2(1 — 2-(3-2H))
The above equation is obtained based on the fact/tfat) is (5]
zero forj < k.

Equation (60) can be further written as 6]
R(r) = f(a; H)yr?G 1 61) 7
where
k (8]
o= = (62)

T
and [9]
fley H) = a®2p; 4+ o5 3p,. (63) [0

p1 andps, defined by

11
pr =222~ 6a) Y
and [12]
_ 3(1 —22H-2)
_920-H) _ 4 _ 9= )
p2=2 == —m—s (65) [13]

are weighting functions which only depend on the Hurst paramgi4)
eterH.

Using the above expressions, we can bound the functlo[ls]
f(a; H) as follows.

Becauser < 2* < 27 and (62), we havd < o < 2.
Through some algebraic manipulations, it can be shown that®!
f(1; H) = f(2; H). Therefore, there is an extreme value

betweenl < « < 2. Through setting the derivative ¢f«; H)

with respect tax to zero, the only root can be found to be [17]
* __ _(2H _ 3)p2
C T eH-2n 0 o
Since the derivative of («; H) with respect tax is nonnegative
in (1, 2), we have [19]
F(1; H) < flo; H) < f(o™; H) (67) [20]
for 1 < a < 2. The conclusion follows by setting [21]
a(H)=f(1; H) (68)
and [22]
c2(H) = f(a™; H). (69)
(23]
Q.E.D
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