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Modeling Heterogeneous Network Traffic
in Wavelet Domain
Sheng Ma, Member, IEEE,and Chuanyi Ji

Abstract—Heterogeneous network traffic possesses diverse
statistical properties which include complex temporal correlation
and non-Gaussian distributions. A challenge to modeling hetero-
geneous traffic is to develop a traffic model which can accurately
characterize these statistical properties, which is computationally
efficient, and which is feasible for analysis. This work develops
wavelet traffic models for tackling these issues. In specific, we
model the wavelet coefficients rather than the original traffic. Our
approach is motivated by a discovery that although heterogeneous
network traffic has the complicated short- and long-range tem-
poral dependence, the corresponding wavelet coefficients are all
“short-range” dependent. Therefore, a simple wavelet model may
be able to accurately characterize complex network traffic. We
first investigate what short-range dependence is important among
wavelet coefficients. We then develop the simplest wavelet model,
i.e., the independent wavelet model for Gaussian traffic. We define
and evaluate the (average) autocorrelation function and the buffer
loss probability of the independent wavelet model for Fractional
Gaussian Noise (FGN) traffic. This assesses the performance of the
independent wavelet model, and the use of which for analysis. We
also develop (low-order) Markov wavelet models to capture ad-
ditional dependence among wavelet coefficients. We show that an
independent wavelet model is sufficiently accurate, and a Markov
wavelet model only improves the performance marginally. We
further extend the wavelet models to non-Gaussian traffic through
developing a novel time-scale shaping algorithm. The algorithm
is tested using real network traffic and shown to outperform
FARIMA in both efficiency and accuracy. Specifically, the wavelet
models are parsimonious, and have the computation complexity
( ) in developing a model from a training sequence of length
, and ( ) in generating a synthetic traffic trace of length .

Index Terms—Long-range dependence, network traffic mod-
eling, self-similiar traffic, wavelets.

I. INTRODUCTION

T RAFFIC modeling and understanding is imperative to net-
work design and simulation, to providing quality of ser-

vice (QoS) to diverse applications, and to network management
and control. Numerous models have been proposed in the past
for modeling network traffic. However, it remains open how to
model heterogeneous network traffic possessing two pertinent
statistical properties: complex temporal correlation and mar-
ginal distributions that result from the complexity of (IP) net-
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works and diverse network applications. The goal of this work
is to develop a traffic model that is both accurate in capturing
the aforementioned statistical properties and computationally
efficient for developing a model as well as generating synthetic
traffic.

The complex temporal correlation of network traffic can
be characterized by the short-range (SRD) and the long-range
dependence (LRD). Examples of traffic exhibiting SRD in-
clude voice-over IP (VoIp) [41] and VBR video traces [21];
and examples of traffic possessing LRD include web request
traffic [12] and Ethernet data traffic [32]. The autocorrelation
function of SRD traffic decays exponentially, and that of LRD
traffic decays hyperbolically. For real-time applications, it has
been shown that only SRD is relevant [25], [55], [7], [21],
and [32]. Numerous models corresponding to short-range-de-
pendent processes can be used to model SRD reasonably
well. These models include variants of Markov processes [3],
[20], [49], [57], [61], [64] and DAR [16], [25]. For nonreal
time applications such as video-on-demand, most of the data
communications and some network management tasks, a traffic
model needs to capture the temporal dependence at large time
scales, i.e., the long-range dependence. The Markov-type
models, when extended to capture LRD, often result in a com-
plicated structure with many states/parameters [3]. Models such
as Fractional Gaussian Noise (FGN) processes [32] can capture
the long-range dependence but not the short-range dependence.
In fact, network traffic such as VBR video can exhibit a
complex mixture of SRD and LRD. That is, the corresponding
autocorrelation function behaves similarly to that of long-range
dependent processes at large lags, and to that of short-range
dependent processes at small lags [7], [21]. Models developed
to characterize both SRD and LRD include FARIMA [21], a
model based on the Hosking procedure [26], the scene-based
model [27], the Markov Modulated Process [3], [52], the fractal
point process [54], and the model [31]. Among
these methods, the scene-based model [27] and the Markov
Modulated process [3], [52] provide a physically interpretable
model to include both long-range and short-range dependence.
However, due to the stochastic nature of network traffic, it is
difficult to accurately define and segment network traffic into
different states in the time domain. FARIMA models are not
computationally efficient. They may require a large number of
model parameters, and computational time to develop a
model from a traffic trace of length and to generate synthetic
traffic of length [21], [26]. The model has been
shown to have a moderate number of parameters. However, it
is a point process. Its efficiency in generating a high volume of
synthetic traffic needs further investigation.

1063–6692/01$10.00 © 2001 IEEE
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Non-Gaussian distribution is another important statistical
property of heterogeneous traffic. It has been shown that both
video and data traffic have heavy-tailed non-Gaussian marginal
probability density functions (PDFs) [21], [53], [30]. Moreover,
the higher order statistics of traffic can have a significant impact
on accurately predicting the buffer overflow probability [26],
[23]. Algorithms have been proposed to incorporate higher
order statistics by matching the marginal distribution and the
second-order statistics of network traffic [26], [44], [24]. How-
ever, their performance, measured by the queueing results, is
still not as desirable [26]. This is because these algorithms only
model the marginal distribution of the traffic at the finest time
scale, whereas the marginal distributions across different time
scales should be modeled for accurately predicting queueing
behavior.

The goal of this work is to develop a traffic model which
can capture complex temporal dependence in terms of both
LRD and SRD, which can model non-Gaussian distributions to
achieve accurate queueing performance, and which is computa-
tionally efficient. Why are these aspects difficult to be achieved
simultaneously? The main reason is that the heterogeneous
traffic is intrinsically complex in the time domain. This makes
it difficult for the time-domain models to be both accurate and
efficient. Models have been developed in the frequency domain
[34]. Although the harmonics are not a generic representation of
heterogeneous traffic, the idea of modeling in a transformation
domain [34] motivates our work in this paper.

Which transformation domain may be suitable for modeling
network traffic? Shermanet al.[56] demonstrated that the statis-
tical properties of the aggregated traffic are self-similar across a
wide range of time scales. In addition, network control and man-
agement are often performed at different time scales. All these
motivate us to model heterogeneous traffic based on time scales.
We show later that time scales can be naturally represented by
wavelets. We also demonstrate that the wavelet representation
matches the properties of the bursty network traffic, in that the
wavelet coefficients are short-range dependent even though the
corresponding heterogeneous traffic may be long-range depen-
dent. Consequently, a simple yet accurate model can be derived
in the wavelet domain.

Wavelet models have been developed for fractional Brownian
motion (FBM) and scale-invariant processes [4], [5], [35], and
[18] in signal processing. Wornellet al.[63] have proven that the
spectrum of the independent wavelet model of an FBM process
is very close to that of processes. Therefore, the indepen-
dent wavelet model has been proposed to rapidly generate FBM
of FGN-like synthetic sample paths. However, the previous in-
vestigation on (asymptotic) correlation structure of wavelet co-
efficients has been focused mostly on a limited scope for FBM
[63], [19], [42], [59], FGN [28], or AR(1) [14]. The correlation
structure has not been well studied for short-range dependent
processes nor for a mixture of long- and short-range dependent
processes. To apply wavelet models to networking related ap-
plications, [2], [1], [18] proposed to estimate Hurst parameters
by wavelet models. The possibility of using wavelets for mod-
eling network traffic was mentioned in [48] and [17]. However,
wavelet approaches have not been applied to modeling hetero-
geneous traffic when this work is developed [37], [38]. Recently,

[51], [50] have applied multiplicative wavelet models to model
network traffic.

The main contributions of this work include: 1) the applica-
tion of the wavelet approach for modeling heterogeneous traffic;
2) the development of a novel time-scale shaping algorithm to
incorporate non-Gaussian distributions of network traffic; and
3) investigation of the performance of the wavelet models using
networking-related performance measures.

Herein, we first investigate whether/why the wavelet mod-
eling approach is indeed capable of capturing the complex
temporal dependence in heterogeneous traffic. For this, we de-
rive analytical results on the correlation of wavelet coefficients.
These results show that a key advantage of using wavelets
is their ability to reduce the complex temporal dependence
so significantly that the wavelet coefficients only possess the
short-range dependence. With these results, we first develop
wavelet models for both SRD and LRD Gaussian traffic, and
then develop a novel multitime-scale shaping algorithm for the
non-Gaussian distributed traffic. After we assess our models
through intensive experiments, we further assess our wavelet
models analytically for modeling FGN traffic. In particular,
we shows that the average buffer overflow probability of the
independent wavelet model, when used to model FGN traffic,
is asymptotically close to that of the original traffic. We show
that the autocorrelation function of the independent wavelet
model of FGN traffic has the same (hyperbolic) decay rate as
the original traffic, with an approximation error of less than
15%. From the computational efficiency perspective, we show
that wavelet models are parsimonious, and have the lowest
computational complexity. In specific, the computational
complexity is in developing a wavelet model from a
training sequence of length , and in generating a
synthetic sample path of length .

The paper is organized as follows. Section II provides back-
ground knowledge. Section III studies why wavelet models are
good candidates for long- and short-range dependent traffic.
Section IV investigates Gaussian wavelet models. Section V
develops a time-scale shaping algorithm to extend the inde-
pendent wavelet models to non-Gaussian traffic. Section VI
presents experimental results which validate the performance
of the wavelet models. Section VII provides analysis on the
autocorrelation function and the buffer loss probability of the
independent wavelet model of FGN traffic to further evaluate
the performance of the wavelet models. Section VIII discusses
our results. Section IX concludes the paper.

II. BACKGROUND

A. Long/Short-Range Dependence and Performance Measures

Intuitively, long-range dependence (LRD) can be considered
as a phenomenon that current observations are significantly cor-
related to the observations that are far away in time. One formal
definition [21] of a long-range dependent stationary process can
be described as that the sum of its correlation function over
all lags is infinite.1 This implies that the correlation function

decays asymptotically as a hyperbolic function of, i.e.,

1Please see [32], [21], [11], and [6] for other definitions and properties of the
LRD.
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(a) (b)

Fig. 1. (a) Haar wavelet basis functions. (b) Corresponding tree diagram and two types of operations. The number in the circle represents the one-dimensional
index of the wavelet basis functions. For example, the equivalent notation ofd isd . s, �(s) and
(s) represent the one-dimensional index of wavelet coefficients.

(s) is defined to be the parent node of nodes. �(s) is defined to be the left neighbor of nodes.

for . is the
so-called Hurst parameter, which is an important quantity for
characterizing the LRD. Examples of such long-range depen-
dent processes include the FGN process and the fractional au-
toregressive integrated moving average process (FARIMA). The
nature of these random processes is “self-similar,” i.e., the cor-
responding statistical properties are invariant at different time
scales [6], [11]. In particular, FGN is a Gaussian process, and
can be completely specified by three parameters: mean, vari-
ance, and the Hurst parameter. FARIMA is a fractional
differentiation of an auto-regressive moving average (ARMA

) process, whereand represent the orders of the ARMA
process and is a differentiation de-

gree. The Hurst parameter of FARIMA equals to
. FARIMA has parameters, and is much

more flexible than FGN in terms of simultaneously modeling
of both long-range dependence and short-range dependence in
network traffic [6]. Examples of short-range dependent random
processes include auto-regressive (AR) and ARMA processes
with exponentially decaying correlation functions, i.e.,

.
The criteria that we use to measure the performance of the

wavelet models are the autocorrelation function and the buffer
loss rate. The autocorrelation function is an important quantity
characterizing the second-order statistics of a wide-sense-sta-
tionary process. If a model is able to capture both LRD and SRD
components in network traffic, it should be able to match the au-
tocorrelation function of network traffic in a long enough range.
The buffer loss rate is chosen as one other criterion, since an im-
portant goal for traffic modeling is to assist designing the buffer
size of a server,2 and estimating the packet loss rate.

B. Wavelet Transformation

Wavelets are complete orthonormal bases which can be used
to represent a signal as a function of time [13]. In , dis-
crete wavelets can be represented as

(1)

2This can be modeled as a single queue with capacityC and a buffer sizeB.

where and are positive integers. The dilation indexchar-
acterizes the function at different time scales. repre-
sents the translation in time. Because are obtained by
dilating and translating a mother function , they have the
same shape as the mother wavelet and therefore are self-similar
to each other.

A discrete-time process can be represented through its
inverse wavelet transform

(2)

where . is equal to the average value of over
. Without loss of generality, is assumed to be

zero for the rest of this paper. ’s are wavelet coefficients and
can be obtained through the wavelet transform

(3)

The mother wavelet we choose in this work is the Haar
wavelet, where

if ,
if ,
otherwise.

(4)

To explore the relationships among wavelets, Willskyet al.
defines a tree diagram and the corresponding one-dimensional
indices of wavelet coefficients [5], [35], [10]. Fig. 1(a) shows
an example of Haar wavelets for , and Fig. 1(b) shows
the corresponding tree diagram. The circled numbers represent
the one-dimensional indices of the wavelet basis functions, and
are assigned sequentially to wavelet coefficients from the top to
the bottom and the left to the right. The one-dimensional index

is thus a one-to-one mapping to the two-dimensional index
, where and represent the scale and the

shift indices of the th wavelet. The equivalent notation3 of

3For example,d is d in the given example. (The shift indexm starts from
0.)



MA AND JI: MODELING HETEROGENEOUS NETWORK TRAFFIC IN WAVELET DOMAIN 637

is then . In addition, we denote the parent and the neigh-
boring wavelets of a wavelet through the tree diagram. As shown
in Fig. 1, and are the parent and the left neighbor
of node , respectively. We use both the one-dimensional and
two-dimensional indices of a wavelet coefficient in this paper.

A key advantage of using Haar wavelets is simplicity. The
computational complexity of the (Haar) wavelet transform and
inverse transform is , where is the length of the time
series.

When is a random process, which is of interest to this
work, the corresponding wavelet coefficients ’s define a
two-dimensional random processes in terms ofand (see
[22], [63], [5], and references therein for details). Due to
the one-to-one correspondence between and its wavelet
coefficients, the statistical properties of the wavelet coefficients
are completely determined by those of . Likewise, if
the statistical properties of the wavelet coefficients are well
specified, they can be used to characterize the original random
process. This motivates our approach of traffic modeling by
characterizing statistical properties of wavelet coefficients.

III. W HY WAVELETS: CORRELATION OF WAVELET

COEFFICIENTS

One of the main motivations for using wavelets is their ability
to reduce the temporal correlation so that wavelet coefficients
are less correlated. In this section, we first provide (asymp-
totic) analysis on correlation structures of wavelet coefficients
for well-known LRD and SRD processes. We then provide em-
pirical studies to show that the correlation structures are domi-
nated by only a few key elements. This motivates traffic mod-
eling in the wavelet domain, and the simple wavelet models we
will choose in Section IV.

A. Analysis on Correlation Structure of Wavelet Coefficients

1) Correlation Structure of Wavelet Coefficients of LRD
Processes:The correlation structure of (long-range dependent)
FGN process has been investigated extensively in [28], [63],
[19], and can be applied to the problem we consider in this
work.

Theorem 1: (Kaplan and Kuo [28]; Flandrin [19]):Let
be a FGN process with Hurst parameter . Let

s be the (Haar) wavelet coefficients of . Then:

1) For a given time scale , s are i.i.d. Gaussian
random variables with zero mean and variance

, where is the variance
of .

2) For large, where , , and
are the dilation and the translation indices of two different
wavelet coefficients, respectively, the correlation between
two wavelet coefficients is

(5)

where .
Here is the shortest distance between

two wavelets, and greater than 1. The exponent, ,
is between 0 and 0.5 since for FGN pro-
cesses. This shows that the correlation changes from the

(a) (b)

Fig. 2. Solid line: Autocorrelation coefficients of the original process.
Dotted line: the normalized autocorrelation of wavelet coefficient, i.e.,
(E(d d )=� � ). (a) AR(1) process. (b) FARIMA (0, 0.4, 0)
process.

mean-revert in the time domain to the
mean-avert in the wavelet domain. Re-
call that the temporal autocorrelation of FGN decays at a
rate for being the lag, and is thus non-
summable. The above theorem indicates that the wavelet
transformation has changed the long-range dependence
in the time domain so significantly that the summation
of the correlation of wavelet coefficients converges to a
constant. Fig. 2 illustrates how drastic the reduction is
by comparing the autocorrelation function of the original
FARIMA (0, 0.4, 0) process to the corresponding auto-
correlation function4 of wavelet coefficients (of and

).

2) Correlation Structure of Wavelet Coefficients of SRD Pro-
cesses:For short-range dependent processes, we derive the cor-
relation of wavelet coefficients.5

Theorem 2: Let be a zero mean wide-sense-stationary
(discrete) Gaussian process with the autocorrelation, where

with , is an integer and is the vari-
ance of . Let s be the (Haar) wavelet coefficients of .
Then:

1) For a given time scale, s are Gaussian random vari-
ables with a zero mean and a variance

.
2) For

(6)

4It can be easily shown that the time seriesd for a fixedj is stationary in
terms ofm. Therefore, the autocorrelation exists.

5No previous results exist on the explicit correlation structure of wavelet co-
efficients for discrete processes except the bounds for some of the continuous
random processes [14].
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Fig. 3. Correlation matrix of FARIMA (0, 0.4, 0).

The sketch of the proof of the theorem is in Appendix A, and
the details are in [38], [36].

This theorem shows that the correlation of wavelet coeffi-
cients decays exponentially as , and there-
fore remains short-range dependent in the wavelet domain. In
fact, the decay rate is even faster than the corresponding cor-
relation in the time domain due to the “differencing operation”
performed by the Haar wavelet transform. Fig. 2 illustrates the
decay rate by comparing the (temporal) correlation for an AR(1)
process with that of its wavelet coefficient for .

The above investigations suggest that a complex short- and/or
long-range dependent process in the time domain may be suf-
ficiently modeled by a short-range dependent process in the
wavelet domain. That is, simple models which are insufficient
for the temporal process may be accurate when used to model
the wavelet coefficients.

B. Empirical Studies on Correlation Structure
of LRD and SRD

What short-range dependence needs to be captured among
wavelet coefficients? Unfortunately, an answer to this question
cannot be provided by Theorems 1 and 2, since they only hold
for large. We thus address this issue
through experiments. Using sample paths of FARIMA (0, 0.4,
0) and AR(1), we obtain the corresponding correlation matrices
of wavelet coefficients plotted in Figs. 3 and 4, respectively.
A pixel in an image represents the correlation between
the th and the th wavelet coefficients, whereand are the
one-dimensional indices shown in Fig. 1. The gray level is pro-
portional to the magnitude of the correlation. The higher the
magnitude of the correlation, the whiter the pixel in the image.
These figures show that in addition to the diagonal line,6 there
are four pairs of lines having “visible” correlation.7 They corre-
spond to the correlation between and , where rep-
resents the parent of the node, and denotes the parent of

6In order to have enough gray level to see more subtle details, the diagonal
pixels, which is always 1, is set to 0.5.

7We only considerK = 5 which has only five levels in the tree diagram.

Fig. 4. Correlation matrix of AR(1).

the node with being 1, 2, 3, 4 from the diagonal line.
We then conclude that the most significant correlation is due to
the parent–child relationship. Since the complicated temporal
correlation concentrates on only a few key correlation patterns
in the wavelet domain, we can use a parsimonious model in the
wavelet domain to represent the original traffic.

IV. GAUSSIAN WAVELET MODELS

We begin developing the wavelet models from the traffic with
Gaussian distribution, for which we only need to characterize
the autocovariance function through the wavelet models.

A. General Markov Models in Wavelet Domain

We capture the short-range dependence among wavelet coef-
ficients using Markov models. Such Markov models can be im-
plemented through a linear model on wavelet coefficients [5],
where8

(7)

Here, and are weighting factors depending
on the one-dimensional index, and is i.i.d Gaussian noise
with zero mean and a unit variance.

The order of the Markov model,, can be chosen to make a
tradeoff between model complexity and performance. Since our
empirical study has demonstrated the regular patterns of the cor-
relation structure for a wide range of SRD and LRD processes,
we can choose accordingly to capture several strongest corre-
lations and ignore the insignificant ones.

B. Independent Wavelet Model for Gaussian Traffic

The simplest model is the independent wavelet model when
is chosen to be 1, and for all . This corresponds to the
case that s are independent Gaussian random variables with
zero mean and variance . can be estimated from data at

8Here we assume causal relations among wavelet coefficients.



MA AND JI: MODELING HETEROGENEOUS NETWORK TRAFFIC IN WAVELET DOMAIN 639

Fig. 5. Log 2 of variance ofd versus the time scalej.

each independently. This model only characterizes the mean
and the variance of individual wavelet coefficients, and com-
pletely neglects the interdependence among them. Therefore,
the resulting correlation is

and
otherwise.

(8)

How can the independent wavelet model represent LRD/SRD
processes in the time domain? To provide answers to this ques-
tion, Fig. 5 plots the variances of wavelet coefficients from an
independent wavelet model for several well-known processes: a
long-range dependent FARIMA (0, 0.4, 0), a short range depen-
dent process AR(1), and a mixture of long-range and short-range
dependent process FARIMA (1, 0.4, 0).

The figure shows that variances of the three processes exhibit
different behavior. In particular, the variance of LRD increases
with exponentially for all . Intuitively, this is due to the fact
that the statistical variation of a LRD process persists through
all time scales. The variance of SRD first increases rapidly at
small time scale , but saturates when is large. This is be-
cause that the statistical variation of SRD processes only per-
sists at small time scales.9 For a mixture of LRD and SRD, the
variance shows the mixed behaviors from both SRD and LRD.
These plots suggest that the variances of independent wavelet
coefficients are capable of distinguishing LRD from SRD for
Gaussian processes.

C. (Low-Order) Markov Wavelet Models

The next simplest model is the first-order Markov model,
which captures the parent–child relationship, the most signifi-
cant correlation among wavelet coefficients as shown in the pre-
vious section. Specifically

(9)

9As an extreme case, the variance of an i.i.d. temporal process, which includes
Poisson-type processes and i.i.d. Gaussian processes, the variances of the cor-
responding wavelet coefficients do not vary with respect to the time scale at all
[47], [62].

where and are the parameters to be determined
from a training sequence, is the one-dimensional index of
a wavelet coefficient, and is the scale index of . is
Gaussian noise with zero mean and the unit variance. This is
a special case of (7) for all s to be zero except ,
where is the parent node of. The resulting correlation pat-
tern of this wavelet model consists of the diagonal line and the
next brightest off-diagonal line in Figs. 3 and 4. Markov wavelet
models with even higher orders can be used to capture more cor-
relations among wavelet coefficients, and can be implemented
in a similar manner.

D. Algorithm for Developing Wavelet Models and Generating
Synthetic Traffic

Once the form of a wavelet model is chosen, two issues need
to be considered: 1) how to obtain parameters of a wavelet
model from a training sequence; and 2) how to generate
synthetic traffic from the obtained model. The algorithm given
below implements these two tasks. Assume a training sequence

of length is given from a Gaussian process.
Algorithm:

1) Estimate parameters from .
• Perform the wavelet transform on to obtain the

corresponding training sequence of wavelet coeffi-
cients, s.

• Estimate the required parameters in the selected
wavelet correlation model (Section IV) from s.10

2) Generate synthetic traffic.
• Generate coefficients from the wavelet correla-

tion model using the estimated parameters for all
and .

• Perform the inverse wavelet transform to the gener-
ated wavelet coefficients ( s). This results in the
synthetic traffic in the time domain.

Efficiency of traffic models can be measured through two
quantities: 1) the computational time needed to develop a model
using a training sequence and to generate synthetic traffic;
and 2) the number of parameters of a model. In particular, the
wavelet transform, the inverse transform, and the parameter
estimation for the wavelet models are all linear [13]. Thus, the
computational time is for developing a wavelet models,
and for generating synthetic traffic of length . As a
comparison, FARIMA requires for estimating param-
eters11 using a training sequence of length, and for
generating a synthetic trace. In terms of the actual computing
time, it usually takes at most a few minutes on a Sparc station
to develop a wavelet model and to generate a trace of length

, whereas a FARIMA model needs at least several hours to
complete the same task.

As for the number of parameters of a wavelet model, an inde-
pendent wavelet model has at most parameters for mod-
eling a training sequence of length. An th order Markov
wavelet model has about parameters (in this
work, ).

10For example, for the independent wavelet model, the sample variances of
wavelet coefficients are estimated.

11Through maximum-likelihood estimation.
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V. NON-GAUSSIAN INDEPENDENTWAVELET MODEL

As heterogeneous network traffic often possesses a
non-Gaussian distribution, we extend the Gaussian wavelet
models to non-Gaussian traffic. The key idea is to shape the
distributions of synthetic traffic at multiple time scales. To
motivate this approach, we first discuss the relationships among
queueing behaviors, time scales, and wavelets. We then present
our algorithm.

A. Time Scale and Buffer Overflow Probability

What should be modeled to accurately predict buffer overflow
probability? Queueing analysis shows that the marginal distri-
bution of the cumulative process of traffic at the critical time
scale is crucial for determining the buffer overflow probability
[15], [8], [9].

To briefly review these results in the large deviation theory,
we let be the capacity of a single first-in-first-out (FIFO)
buffer with an infinite waiting room, be the buffer size at
time , and be the threshold for the buffer overflow. is
known to satisfy [29], where
is the cumulated process of a work load

(10)

and represents the period for cumulation.
The buffer overflow probability has shown to satisfy [15],

[45], [8], [9]

(11)

where is the so-called critical time scale, and
. This approximation has

been shown to be valid asymptotically (for large) for a
wide range of traffic including the long-range dependent
FGN process [15]. It has also been shown to be a reasonable
approximation even for a moderate buffer size with various
traffic loads [8], [9].

An important implication of the above approximation is that
the tail distribution of the cumulated process at the critical time
scale determines the buffer overflow probability. Therefore, an
accurate traffic model should capture the tail distribution of the
cumulated process of the original traffic at the critical time scale.
However, the critical time scale depends on the buffer size, the
capacity , and the utilization. Therefore, in order to perform
well under a wide range of conditions, a traffic model should
match marginal distributions of the cumulated process at a wide
range of time scales.

B. Time Scales and Wavelets

The time scale has a natural relationship with wavelets.
Specifically, as given in [39], the (Haar) wavelet coefficients
can be related to the so-called scale coefficients by

(12)

where the scale coefficient is defined as

(13)

for and integer of . By comparing this equation with the
definition of cumulative process [see (10)], we can relate
the scale coefficient to the cumulative process as

(14)

In other words, a scale coefficient is simply the weighted
cumulative process over the interval with
a length and a starting point .

The scale coefficient can be further related to wavelet coeffi-
cients through the recursive relation [see (12)] as

(15)

where is a weighting factor, and is the
scale coefficient at the coarsest time scale. Finally, combining
(15) and (14), wavelet coefficients can be related to a cumulative
process through scale coefficients.

C. Time-Scale Shaping Algorithm

Using the relationships among wavelet coefficients, scale
coefficients, and the cumulative process, we can now derive
our shaping algorithm for non-Gaussian traffic. The key
idea consists of the following: 1) generating the so-called
background wavelet coefficients by Gaussian wavelet models
(Section IV-D); 2) computing the empirical distributions of
scale coefficients of a training sequence; and 3) shaping the
background wavelet coefficients so as to match the empirical
distributions of the scale coefficients.

The idea can be implemented through a top-down procedure,
i.e., the background wavelet coefficients are shaped from the
coarsest to the finest time scales. Specifically, letand be
the unshaped and the shaped wavelet coefficients at theth time
scale, respectively. Assume that the shaping has been done from
the coarsest ( th) to the [ th] time scale. At step,
we fix the following: s for all and ,
and [related to through (15)]. Our objective at step
is to transform the (unshaped) wavelet coefficient to the
shaped wavelet coefficient so as to match the empirical
distribution of the scale coefficients s. To do so, we de-
fine an intermediate variable .
We note that if an appropriate transform can be applied to ,
then would become the new scale coefficient,
[see (12)],12 whose desired distribution can be computed by the
training sequence at scale . Hence, we obtain

(16)

where represents the distribution of the scale coeffi-
cient at scale ,13 and can be estimated through the
histogram [57], [26] of training traffic using (14).

12By (12),~v needs to be obtained to march the marginal of a cumula-
tive process. But from (13),v = (1=

p
2)(v + v ). Therefore,

eitherv or v can be chosen arbitrarily for shaping in order to match a
desired marginal with that of a cumulative process. We choose to shapev
in this work.

13We assume thatv for a fixed j has the same distribution for different
m. This is true for stationary traffic. Therefore, the distribution ofv can be
estimated through a histogram ofv for a fixedj.
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To understand what transformation is, we note
that for an independent wavelet model, is independent of

. This is because only depends on wavelet coefficients
at time scales larger than. Therefore, we have

(17)

where is a Gaussian random variable determined by the
wavelet model. For Markov wavelet models with dependent
wavelet coefficients, the cumulative distribution function

is equal to the conditional cumulative distribu-
tion function of given ,

(18)

Such a conditional distribution is difficult to estimate empiri-
cally. Therefore, the transformation for the independent wavelet
model [see (17)] can be used as an approximation.

Combining (16) and (17), we have

(19)

From the shaped wavelet coefficient , the shaped scale coef-
ficient can be obtained as

(20)

It can be verified that the (shaped) scale coefficient, has
indeed the (targeted) distribution .

The above procedures can be summarized by the following
algorithm.

Time-Scale Shaping Algorithm
Input: a training sequence (network
traffic) . Output: synthetic traffic

or model parameters (wavelet coeffi-
cients, s)
Traffic modeling
1. Do wavelet transform on the training
sequence to obtain wavelet coeffi-
cients s and then scale coefficients

s [see (15)].
2. Estimate the variance of wavelet

coefficients at each time scale .
3. Estimate the cumulative probability
function of scale coefficients, ,
at each time scale using a training
sequence on the cumulative process 14

.
Synthetic traffic (or the model parame-
ters) generation
1. Generate background (Gaussian)
wavelet coefficients from a wavelet
correlation model.
2. Recursively compute the (shaped)
wavelet coefficients [(16) and (19)]
and scale coefficients [see (20)]
from to 1 for all .
3. Do wavelet inverse transformation and
obtain the synthetic traffic .

14Which can be obtained by aggregating the original training sequence at
various time scales.

Fig. 6. Experimental setup.

VI. PERFORMANCE OFWAVELET MODELS: NUMERICAL

INVESTIGATIONS

In this section, we report numerical investigations on the per-
formance of the wavelet models, where the performance for
modeling Gaussian traffic is measured by the autocovariance
function, and that for modeling non-Gaussian traffic is mea-
sured by the buffer loss probability. The results on modeling
Gaussian traffic are verified using training sequences generated
from known processes, and those for non-Gaussian traffic are
validated using real network measurements.

A. Simulation Setup

The experimental setup we use is shown in Fig. 6. A trace
is fed into a traffic model for estimating parameters of a

wavelet model. The model obtained is then used to generate syn-
thetic traffic . The original and synthetic traffic traces are
then used to obtain empirical autocovariance functions and the
buffer losses probabilities, which are compared to measure the
performance of the wavelet models. A FARIMA model is used
similarly to further compare with the performance of the wavelet
model. Both the sample autocorrelation functions and the buffer
loss probabilities are obtained and compared with the true au-
tocovariance functions and the buffer loss rates. The results for
wavelet models are averaged over ten random sample paths.

B. Performance on Gaussian Traffic

The performance of three types of wavelet models are investi-
gated, which are independent wavelet models and the first-order
and the third-order Markov wavelet models. A sample path
of length 10–10 is generated from either an AR or a FARIMA
model. As various model parameters are used in our simulations,
we report results in this paper based on two representative cases:
a short-range dependent process, AR(1) with an AR parameter
0.9, and a mixture of both SRD and LRD processes, FARIMA(1,
0.4, 0), with an AR parameter 0.9 and the Hurst parameter 0.9.

Figs. 7 and 9 show the sample autocorrelation functions for
AR(1) and FARIMA(1, 0.4, 0); and Figs. 8 and 10 plot the buffer
loss rates, respectively. To examine further the performance of
each wavelet model, we plot the mean square error MSE
between the original autocorrelation and the one from a wavelet
model summing up to a lag, where

(21)
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Fig. 7. Sample correlations. —: AR(1) (the true autocovariance function); - -:
third-order Markov wavelet model; —. : first-order Markov wavelet model; ... :
independent wavelet model.

Fig. 8. Buffer response. x-axis: utilization. y-axis:log 10(overflow
probability). — : AR(1) (the true buffer loss probability); - - : third-order
Markov wavelet model; —. : first-order Markov wavelet model; ... : independent
wavelet model. The normalized buffer size is 0.1, 0.5, 1, 10 from top down.

Figs. 11 and 12 plot for AR(1) and FARIMA(1, 0.4,
0), respectively.

As observed from the figures, the independent wavelet model,
which neglects all the dependence in the wavelet domain, per-
forms reasonably well. Markov wavelet models which capture
more correlations among wavelet coefficients improve the per-
formance only marginally.

C. Performance on Real Network Traffic

The performance of the independent wavelet model and the
time-scale algorithm is investigated in this section using real
network traffic. Specifically, two widely used traffic traces are
used. One is JPEG-codedStar Warsat the frame level [21].
The trace is obtained by applying a JPEG-like encoder to each
of 171 000 frames at intervals of 1/24 second per frame of the

Fig. 9. Sample correlations. — : FARIMA(1, 0.4, 0) (the true autocovariance
function); —. : third-order; - -: first-order; ... : independent wavelet model.

Fig. 10. Buffer response. x-axis: utilization. y-axis:log 10(overflow
probability). — : FARIMA(1, 0.4, 0) (the true buffer loss rate);—. : third-order
Markov wavelet model; - -: first-order Markov wavelet model; ... : independent
wavelet model. The normalized buffer size is 0.1, 0.5, 1, 10 from top down.

two-hour movieStar Wars. The other is an Ethernet data trace
used by Lelandet al. [33].15 The data set records the number of
bits for every 10 ms during the half hour collection period. The
length of this training sequence is 176 000.

An independent wavelet model is used and the time-scale
shaping algorithm developed in Section V are applied.
FARIMA(25, d, 20) model is used for comparison, where
FARIMA(25, d, 20) has 25 AR parameters and 20 MA pa-
rameters.16 The algorithms used for FARIMA to estimate
its parameters and to generate synthetic traffic are from a
commercial software package, Splus [58]. As the two training
sequences have non-Gaussian marginal distributions, the
generated Gaussian traffic by FARIMA is further transformed
using a standard method [26] so that the resulting synthetic

15We only report results on the data set collected in August 1989.
16FARIMA(25, d, 20) is selected by compromising performance and com-

plexity through multiple trials.
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Fig. 11. MSE compared with AR(1). x-axis:� . y-axis: MSE(�). — :
fourth-order Markov wavelet model; ... : third-order; - -: second-order; —. :
first-order; ..+: independent wavelet model.

Fig. 12. MSE compared with FARIMA(1, 0.4, 0). x-axis:� . y-axis: MSE(�).
— : fourth-order Markov wavelet model; ... : third-order; - -: second-order; —.
: first-order; ..+: independent wavelet model.

traffic has a desired marginal distribution as estimated from the
real trace.

Figs. 13 and 16 plot the autocorrelation functions resulting
from the FARIMA(25, d, 20) and the wavelet model for both
traces, respectively. These figures show that the wavelet model
has a comparable performance to that of FARIMA in terms of
modeling the second-order statistics. Figs. 14 and 15 give the re-
sults on the buffer loss probabilities for both traces, respectively.
As observed, the performance of the wavelet model resulting
from the time-scale shaping algorithm is comparable to that of
FARIMA(25, d, 20) at small buffer sizes but is much improved
at large buffer sizes. This shows the importance for the wavelet
model and the time-scale shaping algorithm to match the non-
Gaussian marginal distributions of the cumulative process at a
wide range of time scales.

Fig. 13. — : Autocorrelation ofStar Wars; - - : FARIMA(25, d, 20); ... :
Algorithm 2.

Fig. 14. Vertical axis:log (loss rate); horizontal axis: work load. — : single
video source; ... : FARIMA(25, d, 20); - - :Algorithm 2. Normalized buffer size:
0.1, 1, 10, 30 and 100 from the top down.

VII. PERFORMANCE OFINDEPENDENTWAVELET MODELS:
ANALYSIS

One observation from our empirical studies is that indepen-
dent wavelet models are rather accurate measured by both the
autocovariance function and the buffer overflow probability,
and the Markov models which include additional dependence
only improve the performance marginally. This motivates us to
further access the performance of independent wavelet models
through analysis. We focus our analysis in this work on a lim-
ited case when independent wavelet models are used to model
an FGN process. An FGN process is of the particular interest,
since it is the only long-range dependent process with an
explicit autocorrelation function. In addition, the independent
wavelet model of an FGN process can be expressed explicitly
[28]. This makes it possible for us to analyze the corresponding
buffer overflow probability and the autocorrelation explicitly,
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Fig. 15. Buffer response. —: data trace; - -: wavelet model; ... : FARIMA.
Normalized buffer sizeB=C: 0.1, 1, 10, 30 and 100 from the top down.

and compare with those of the original FGN process given in
the prior work [15], [46], [43].

A. Definitions and Notations

Let represent an FGN process. is a random
process resulting from the (Haar) independent wavelet model,
where

(22)

, and represents the limited resolution. is a (Haar)
wavelet basis function with a scale index , and a shift index

. is an independent Gaussian random variable defined
in (8). Let be the limit17 of with respect to , i.e.

(23)

Since is a cyclostationary rather than a stationary
process [63], we need to define the average buffer overflow
probability of the independent wavelet model.

B. Average BufferOverflow Probability

Consider a discrete time queue with an infinity buffer and the
capacity . and are fed into two such queues at the
beginning of a discrete time slotfor , Let and be
the buffer sizes at the end of theth time slot due to and

, respectively,18 where

(24)

and

(25)

and are the cumulated process,
, and .

17Assume the limit exists.
18As the subscriptw represents for the wavelet model,x (t) corresponds

to the synthetic traffic from the independent wavelet model, andB is the
corresponding buffer size.

Fig. 16. Sample autocorrelation. x-axis: lag. y-axis: sample autocorrelation.
—: data trace; - -: wavelet model; ... : FARIMA model.

Let denote the buffer overflow probability due
to the independent wavelet model at time-slot, where

(26)

Since is nonstationary [63] as mentioned in the previous
section, varies with . Therefore, to have a mean-
ingful buffer loss rate of the independent wavelet model, we de-
fine the average buffer overflow probability as

(27)

Since an FGN process is a stationary process, its buffer overflow
probability, , is

(28)

for any positive integer. The average buffer overflow proba-
bility of the independent wavelet model for an FGN process can
then be derived and compared with the true value as shown by
the following theorem.

Theorem 3: When the buffer size goes to infinity,
the buffer overflow probability of the independent model,

, and that of the original FGN process, ,
satisfies

(29)

(30)

for

(31)

where ( ) is the Hurst parameter of the FGN
process, and is a positive integer.
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This theorem shows that when the buffer sizeis assumed to
be a subset of all possible values, and is large, the independent
wavelet model is asymptotically close to that of the original
FGN [15], [46]. In other words, the independent wavelet
model can faithfully capture a long-range dependent FGN
traffic. Therefore, the result shows, in this special case, the
capability and performance of the independent wavelet model,
as well as the feasibility of using the model for queue analysis.
Meanwhile, we would like to note that even for this special
case, the proofs of the theorem involve elaborate analysis. The
difficulty is due to the cyclostationarity of the independent
wavelet model [63] which leads to the time-varying buffer
overflow probability. This is, in fact, the consequence of using
an independent wavelet model by ignoring all the dependence
in the wavelet domain. As the result, techniques such as the
large deviation cannot be used directly, and the lower and upper
bounds have to be derived for the average buffer overflow
probability. The main idea of the proof is given in Appendix B,
and the details can be found in [36].

C. Average Autocorrelation Function

The performance of independent wavelet models can be fur-
ther evaluated through the autocorrelation function. To deal with
cyclostationarity of the independent wavelet model, we need to
define the average autocorrelation function. Specifically, let the
average autocorrelation function of the resolution-limited inde-
pendent wavelet model be

(32)

The limit defines the average autocorrelation function of ,19

where

(33)

Using the variance of the independent wavelet model for
FGN process (see Part 1 of Theorem 1) in (33), we can derive
the following theorem.

Theorem 4: The average autocorrelation function of the in-
dependent wavelet model for an FGN process is bounded by

(34)

where is the Hurst parameter. and
are defined by a function , where

(35)

and are

(36)

and

(37)

Then

(38)

19Assuming the limit exists.

Fig. 17. x-axis:H . Solid line: c (H). Dashed line:c (H). Dotted line:
c (H).

and

(39)

where .
The proof of Theorem 4 is in Appendix C. To understand the

results given by the theorem, we recall that the autocorrelation
function of an FGN process is [40]

(40)

(41)

where . The performance of independent
wavelet models measured by autocorrelation functions can then
be evaluated by comparing (34) with (41). The theorem (34)
shows that the average autocorrelation function of independent
wavelet model decays hyperbolically. This demonstrates that an
independent wavelet model is capable of modeling long-range
dependence in network traffic. In addition, the rate of decay

for large lags is the same as that of the autocor-
relation function of the original FGN process. By further com-
paring the constants with and shown in
Fig. 17, we can examine the difference between the autocorre-
lation function of the independent wavelet model and that of the
original FGN process. Specifically, the relative difference be-
tween the constants ( and

) is plotted as a function of Hurst parameterin
Fig. 18, and shown to be no more than 15% between the average
autocorrelation function of the independent wavelet model and
that of the FGN.

VIII. D ISCUSSION

A. Performance and Efficiency of Wavelet Models

Why do independent wavelet models perform so well even
when they neglect all the dependence in the wavelet domain?
Intuitively, the (deterministic) self-similar structure of wavelets
is a natural match to the statistical self-similarity of traffic. As
wavelet basis functions have “absorbed” the long-range and
short-range dependence by differencing the averages at all time
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Fig. 18. x-axis:H . Solid line: jc (H) � c (H)j=c (H). Dotted line:
jc (H) � c (H)j=c (H).

scales, the wavelet coefficients are short-range dependent. This
makes it possible to model wavelet coefficients as independent
(or low-order Markov dependent) random variables without
losing much information. The resulting wavelet model is there-
fore simple and parsimonious. In addition, since there exist fast
algorithms for both wavelet transforms and inverse transforms
[13], our method is able to achieve the lowest computational
complexity in developing the model and in generating synthetic
traffic.

B. More on the Related Work

In signal processing, [4], [5], [35] have established a general
framework for multiscale representations of a random process
through the dyadic tree. [63], [19], [42], [59] have shown that
wavelets can provide compact representations for an FBM
process. Moreover, it has proven [63] that the spectrum of the
independent wavelet model of an FBM process is very close
to that of processes. Therefore, the independent wavelet
model has been proposed to rapidly generate FBM or FGN-like
synthetic sample paths. But the previous investigation on
(asymptotic) correlation structure of wavelet coefficients has
been focused mostly on a limited scope for FBM [63], [19],
[42], [59], FGN [28], or AR(1) [14]. The correlation structure
has neither been well studied for short-range dependent pro-
cesses20 nor for a mixture of long- and short-range dependent
processes. Since network traffic has both short- and long-range
dependence, we have extended the previous work to a broader
class of Gaussian processes in order to study correlation struc-
tures. Wavelets were also used to estimate Hurst parameters
[2], [1], [18]. The possibility of using wavelets for modeling
network traffic was mentioned in [48], [17].

IX. CONCLUSION

This work is motivated by the fact that wavelet coefficients of
network traffic with complex long-range and short-range depen-

20Bounds but not the actual correlation function were derived in [14].

dence are no longer long-range dependent. Therefore, simple
models can be developed in the wavelet domain. In this work, we
have investigated thoroughly the independent wavelet model,
the simplest wavelet model. In that, we have shown that they
are capable of characterizing both long- and short-range depen-
dent (temporal) processes through variances of wavelet coeffi-
cients at different time scales. We have derived autocorrelation
functions and the queue loss rate using the independent wavelet
model for the case of FGN traffic. Further, we have developed
Markov wavelet models which capture the dependence among
wavelet coefficients. We have compared the performance of the
independent and Markov models, and show that independent
wavelet models are sufficiently accurate and Markov wavelet
models only improve the performance marginally. Finally, we
have developed a time-scale shaping algorithm that extends the
(Gaussian) wavelet models to non-Gaussian traffic. The algo-
rithm shapes traffic at different time scales by exploiting rela-
tionships among (Haar) wavelet coefficients, scale coefficients,
and the cumulative process. We also have demonstrated that the
wavelet models are parsimonious, and have the lowest compu-
tational complexity achievable.

A possible future direction is to extend our initial (queue and
autocorrelation function) analysis to a more general setting. An-
other issue of interest is to better deal with the nonstationary na-
ture of the independent wavelet model, which we have discussed
somewhat in this work. Other issues of interest include how to
apply wavelet models as well as the concept of time scales to
assist network design, control, and management.

APPENDIX A
PROOF OFTHEOREM 2

Proof: Since the proof of Theorem 2(b) is similar to that of
2(a), in this appendix, we only sketch the proof of 2(a).

Since is stationary and is obtained through the
wavelet transform which is linear, is stationary in terms of

. Without the loss of generality, we only need to consider.
From definition of Haar wavelet coefficients, we have

(42)

(43)

(44)

Through straightforward algebraic manipulations (see [38], [36]
for details), we can compute the two terms of (44), and thereby
prove the theorem.



MA AND JI: MODELING HETEROGENEOUS NETWORK TRAFFIC IN WAVELET DOMAIN 647

APPENDIX B
MAIN IDEA OF THE PROOF OFTHEOREM 3

As the buffer loss probability of independent wavelet models
is defined in the average sense to account for the nonstation-
arity, the proof of Theorem 3 involves comprehensive analysis
to bound the average loss rate. Here, we provide the main ideas
of the proof. More details can be obtained in [36], [38].

Since proving Theorem 3 is equivalent to proving that

(45)

and

(46)

where is defined by (31), we need to show (45) and (46) hold
respectively.

Note that the buffer overflow probability [see (26)] can be
generally lower bounded [15], [60] by

(47)

and upper bounded by the union bound as

(48)

For an FGN process ( ), Duffield [15] has shown
that the upper and the lower bounds of the buffer overflow prob-
ability are asymptotically close to each other. That is

(49)

(50)

(51)

(52)

where is the so-called
critical time scale [45].

Therefore, to prove (45), it is sufficient to prove that

(53)

for all integers and , and using (48) and (51). On the other
hand, the lower bound [see (46)] can be obtained through (47)
and (50), if we can show that

(54)

where is the critical time scale of the FGN, holds under cer-
tain conditions on and .

Since , the cumulative process of the independent
wavelet model, is a Gaussian random variable for fixedand
, a key step for us to derive the theorem through proving (53)

and (54) is to derive the variance of , and relate it to that
of .

Because is a function of , our proof contains two main
steps. The first step is to show that the conclusion holds for the
special time slot, ( and is a large integer).
This can be done through deriving the wavelet representation of

and calculating the variance of . The second
step is to relate the variance of , for any , to that
of . The proofs for these two steps are done mostly
through algebraic manipulations, and are lengthy due to the non-
stationary nature of independent wavelet models. (Please refer
[36] for details.) Intuitively, because wavelets provide the multi-
scale representation of a signal [39], which in our case is traffic,
the cumulated processes resulting from the independent wavelet
model s are equal in probability to the cumulated process
of an FGN process at special set ofand . This results in
the fact that is very close to for the rest of and .
We prove that the above intuitions are true in [36], and therefore
prove the theorem.

APPENDIX C
PROOF OFTHEOREM 4

To prove the theorem, we first need to derive an expression
for the average autocorrelation function.

Inserting the wavelet representation of defined in (22)
into (33), we can obtain through some algebraic manipulations

(55)

where

otherwise.

(56)

represents the variance of wavelet coefficients of an FGN
process and is given in Theorem 1 as

(57)

Then the average autocorrelation function [see (55)] of an inde-
pendent wavelet model for an FGN process is

(58)

Let . Replacing by (56), we have

(59)
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(60)

The above equation is obtained based on the fact that is
zero for .

Equation (60) can be further written as

(61)

where

(62)

and

(63)

and , defined by

(64)

and

(65)

are weighting functions which only depend on the Hurst param-
eter .

Using the above expressions, we can bound the function
as follows.

Because and (62), we have .
Through some algebraic manipulations, it can be shown that

. Therefore, there is an extreme value
between . Through setting the derivative of
with respect to to zero, the only root can be found to be

(66)

Since the derivative of with respect to is nonnegative
in (1, 2), we have

(67)

for . The conclusion follows by setting

(68)

and

(69)

Q.E.D
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