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Abstract— A significant discovery from this work is that
although video traffic has complicated short- and long-

range dependence in the time domain, the corresponding

wavelet coefficients are no longer long-range dependent in

the wavelet domain. Therefore, a “short-range” dependent
process can be used to model video traffic in the wavelet

domain. In this work, we develop such wavelet models for
VBR video traffic.

The strength of the developed wavelet models includes

(1) it provides a unified approach to model both long-range

and short-range dependence in video traffic simultaneously,

(2) it has the ability to reduce the temporal dependence so

significantly that the wavelet coefficients can be modeled by

either independent or Markov models, and (3) the model

results in a computationally efficient method on generating

high quality video traffic.

Key words: wavelet, long-range dependence, short-range

dependence, traffic modeling, VBR video traffic.

Topics: video networking, B-ISDN and ATM, admission

cent rol.

I. INTRODUCTION

Since VBR compressed video traffic is expected to be

one of the main loading components in future B-ISDN and

wireless networks, accurate modeling of the VBR traffic will

be crucial to many important applications such as control-

ling the Quality of Service, effectively allocating network

resources and designing buffer/capacity of networks. Nu-

merous studies have been conducted on traffic modeling

and performance analysis, see for example [9] [6] [12] [11] [21]

and references therein.

One of the significant statistical properties of VBR video

traffic has been found to be the co-existence of the so-

called long-range dependence (LRD) and the short-range

dependence (SRD) in the video trace [2][10] [6]. Roughly

speaking, this means that the auto-correlation function of

the video traffic behaves similarly to that of long-range de-

pendent processes such as Fractional Gaussian Noise pro-

cess[19] at the large lags, and to that of short-range depen-

dent processes such as DAR processes[6] at the small lags.

The long-range and the short-range dependence embedded

in video traffic results from scene changes, and suggests a

complex behavior in the time domain [14]. This complex

temporal behavior makes accurate modeling of video traf-

fic a challenging task. In other words, using either a long-

range dependent or a short-range dependent process alone

would not do a good job on modeling the video traffic.

Ideally, a good traffic model needs to be (a) accu-

rate enough to characterize pertinent statistical proper-

ties in the traffic, (b) computationally efficient, and (c)

feasible to be used for the analysis needed for network

design. The existing models which have been devel-

oped to model both the long-range and the short-range

dependence include FARIMA models[lO] [1 1], Transform-

Expand-Sample (TES) modeling [18], scene-based mod-

els[12] and the Markov Modulated Processes[l]. A com-

mon feature of all these methods is that they model both

LRD and SRD in the time domain. Among these methods,

the scene-based modeling[12] and the Markov Modulated

models [l] provide a physically interpretable model to in-

clude both the long-range and the short-range dependence,

However, due to the dynamic and stochastic nature of the

video traffic, it is difficult to accurately define and segment

video traffic into different states of a Markov model. TES

model is fast but too complicated to be used for analysis,

The rest of the methods all suffer the computational com-

plexity too high to be used for generating a large volume

of synthesized video traffic [l O]. A more computationally

efficient method based on Fast Fourier Transform has been

proposed [20] to model Ethernet traffic in the Frequency

domain. Another method based on Markov models has

been proposed to model the frequency components of video

traffic [15]. Both methods suggest that interesting proper-

ties of either Ethernet or video traffic could be investigated

in the Frequency domain. However, none of the methods

are yet able to capture the long-range and the short-range

dependence simultaneously,

Therefore the question remains open on how to develop

a comput ationally efficient model which can capture both

the long-range and short-range dependence in the video

traffic. In this work, we will tackle this problem by develop-

ing a new method based on wavelets. Instead of modeling

the video traffic directly in the time-domain, we model the

statistical properties of wavelet coefficients in the wavelet

domain.

Why do we choose wavelets? It has been shown in

[13][23] [8] that wavelets can provide compact representa-

tions for a special class of long-range dependent processes,

the Fractional Gaussian Noise (FGN) processes. This is

because the self-similar (deterministic) structure of wavelet

bases naturally matches the (statistical) self-similar struc-

ture of the long range dependent processes. Then the

wavelet coefficients can be modeled by simple statistics cor-

responding to the “short-range dependence” alone in the

wavelet domain. In this work, we will show that a simple

wavelet model based on independence assumptions is capa-

ble of capturing both the long-range dependence for more

general LRD processes and the short-range dependence as
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well, and thus provides a parsimonious and unified model

to capture both the long-range and the short-range depen-

dence in video traffic. Furthermore, since computational

complexity of wavelet transforms and inverse transforms

are in the order of fV, our wavelet models can rapidly gen-

erate synthesized video traffic of length N with a com-

putational complexity 0(N), and thereby provide one of

the most eificient methods to synthesize high quality video

traffic.

In this paper, we will first investigate why it is more ef-

ficient to model the video traffic in the wavelet domain,

and what statistical properties of wavelet coefficients are

pertinent to capture the long-range and the short-range

dependence. We will then develop wavelet models based

on these statistical properties. The method will be tested

extensively using both well-known processes, which are ei-

ther long-range or short-range dependent, and three real

video traces.

Theoretical analysis on the buffer loss probability will be

carried out for the FGN work load when the work load is a

Fractional Gaussian Noise process. We will show that the

buffer loss probability of the independent wavelet model

only differs from that of FGN by a negligible amount. Then

the analysis suggests that wavelet coefficients can be well-

modeled as independent random variables in the wavelet

domain.

The format of the paper is as follows. In Section 2, we

will provide background knowledge. In Section 3, we will

investigate statistical properties of wavelet coefficients, and

develop our algorithm to generate the wavelet model for

the long-range and the short-range dependent processes,

respectively. In Section 4, we will provide statistical prop-

erties of wavelet coefficients for the real video traffic, and

derive our algorithms based on these properties. We will

give theoretical analysis on the buffer loss probability using

the wavelet model on Fractional Gaussian traffic in Section

5, and then conclude the paper.

II. BACKGROUND

A. Long-Range versus Short-Range Dependence

Roughly speaking, Long-Range Dependence (LRD) can

be considered as a phenomenon that current observations

are significantly correlated to the observations that are far-

ther away in time. This phenomenon is of particular inter-

est to traffic modeling, since it has been discovered recently

that both the Ethernet traffic[14] and video sources[2][10]

possess the long-range dependence.

One formal definition [10] of a long-range dependent sta-

tionary process can be described as that the sum of its auto-

correlation function r(k) over all lags is infinite 1. This im-

plies that the auto-correlation r(k) decays asymptotically

as a hyperbolic function of k, i.e., r(k) N o(~-(=W)

for k ~ O. H (0.5 < H < 1) is the so-called Hurst pa-

rameter, which is an important quantity used to charac-

terize the LRD. Examples of such long-range dependent

processes include the (asymptotically) second-order self-

1Please see [14] [10] for other definitions and properties of the LRD.

similar process, Autoregressive Integrated Moving Aver-

age process (ARIMA), and the (exactly) second-order self-

similar process, Fractional Gaussian Noise (FGN) process.

FARIMA(p, d, q) is a fractional differentiation of an Auto-

Regressive Moving Average (ARMA(p, q)) process, where

p and q represent the orders of the ARMA(p, q) process

and d (O < d < 0.5) is a differentiation degree. The Hurst

parameter II of FARIMA(p, d, q) equals to 0.5 + d. For
a positive p or q, FARIMA(p, d, q) is a mixture of both

long-range and short-range dependent process. Because

FARIMA(P, d, q) has P + q + 3 parameters, it is much more

flexible than FGN in terms of simultaneously modeling of

both SRD and LRD in the traffic. More detailed expla-

nations on FGN and FARIMA processes can be found in

[2].

The short-range dependence, on the other hand, can be

characterized by an exponential decay of the autocorrela-

tion function, i.e., r(k) * P~ (–1 < P < 1). Examples

of short-term dependent random processes include Auto-

Regressive (AR) processes and Auto-Regressive-Moving-

Average (ARMA) processes.

B. Wavelet Transformation

The model we will develop on video traffic is based on

wavelets. Wavelets are complete orthonormal bases which

can be used to represent a signal as a function of time[4].

In L2 (R), discrete wavelets can be represented as

#y(t) = 2-~/2#(2-~t - m), (1)

where j and m are positive integers. j represents the dila-

tion, which in turn characterizes the function ~(t)at dif-

ferent time scales. m represents the translation in time.

Since such wavelets are obtained by dilating and translat-

ing a single function ~(f), ~(t) is called the mother wavelet.

Moreover, all base functions, ~~ (t), have the same shape

as the mother wavelet and therefore self-similar with each

other.

A discrete-time process z(t) can be represented through

its inverse wavelet transform

(2)

j’=1m=O

where O ~ t < 2K. K is a positive integer, which char-

acterizes the limited resolution in time. +0 is equal to the

average value of ~(t) over t G [0, 2K — 1]. d~’s are wavelet

coefficients, which can be obtained through the wavelet

transform
2K–1

(3)

t=o

The mapping between m(t)and its wavelet coefficients can

be shown to be one to one.

The mother wavelet we choose in this work is the Haar

wavelet. It is defined as

{

1, if O~t <l/2,

fp(t)= –1, if 1/2 < t <1, (4)

o, otherw~se.
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Fig. 1. Left figure shows the Haar wavelet basis functions. Right
fignre illustrates the corresponding tree diagram and two types

of operations. ~(s) is defined to be the parent node of node s.
v(s) is defined to be the left neighbor of node s. The number

in the circle represents the one dimension index of the wavelet

basis functions. s,v(s)and~(s) alsorepresent theone dimension

index of wavelet coefficients.

The corresponding wavelet, ~~ (t), is a scaled and shifted

+(t) with the support over [7n2~, (r-n+ 1)2~ – 1]. The Haar

wavelet based functions have been illustrated in Figure (1)

for N = 8. The left figure of Figure (1) illustrates the

wavelet base functions. The right figure of Figure (1) shows

its corresponding tree diagram[3]. The number in the cir-

cle represents the one dimension index of the correspond-

ing wavelet base function. We define y(s) and v(s) (see

illustration in the tree diagram) to be the node index of

the parent of a node s and the node index of the left side

neighbor of a node s, respectively.

The motivation for using Haar wavelets is due to sim-

plicity which results in computationally efficient methods

for the wavelet transform and the inverse transform. In

particular, when the Haar wavelets are used, the wavelet

coefficients can be easily derived from Equation (3) as

t=m2j t=(m+O.5)2~

Since the two terms in the above expression correspond to

the summation of the first and the second half of the time

series x(-t), the wavelet coefficients can be computed very

easily. As shown in [4], the computational complexity of

the wavelet transform and the inverse transform is in the

order of O(N), where N = 2K is the length of the time

series.

When $(t) is a random process, which is of the interest

to this work, the corresponding wavelet coefficients are ran-

dom variables (please refer to [13] [23] and references therein

for theoretical details on wavelet representations of random

processes). Due to the one-to-one correspondence between

z(t) and its wavelet coefficients, the statistical properties

of the wavelet coefficients are completely determined by

those of z(t). Likewise, if the statistical properties of the

wavelet coefficients are well specified, they can be used to

characterize the original random process. This motivates

our approach of using wavelets to model video traffic, i.e.,

to statistically model wavelet coefficients of the traffic in

the wavelet domain.

*O

. A.IMAO ,.,.,0)

I-.. . I
,,:. s..,.,“ ‘o “

Fig. 2. Log z of Variance of dj versus the time scale ~

III. WAVELET MODELING OF LONG-RANGE AND

SHORT-RANGE DEPENDENT PROCESSES

As the first step to investigate the feasibility and advan-

tage of wavelets to model video traffic, we will first investi-

gate wavelet representations on well-known long-term and

short-term dependent Gaussian processes.

A. The Variances of Wave[et Coejicients

To understand whether and how wavelets capture

the LRD and SRD, we plot in Figure (2) the

variances of wavelet coefficients for three well-known

processes: FARIMA(O, 0.4, O), FARIMA(l, 0.4, O), and

AR(1)2. ARIMA(O, 0.4, O) is a long-range dependent pro-

cess with Hurst parameter H = 0.9, AR(1) is a short-range

dependent process, and FARIMA(l, 0.4, O) is a mixture of

the long-range and the short-range dependent process.

As observed from the figure, for FARIMA(O, 0.4, O)

process (LRD alone), the variance increases with j ex-

ponentially for all j. For AR(1) (SRD alone), the

variance increases at an even faster rate than that of

FARIMA(O, 0.4, O) when j is small but saturates when j

is large. For FARIMA(l, 0.4, O) (a mixture of LRD and

SRD), the variance shows the mixed properties from both

AR(1) and FARIMA(O, 0.4, O).

These results indicate that wavelets are capable of distin-

guishing the long-range from the short-range dependence,

B. The Correlation Structure of Wavelet Coe@cients of

LRD Processes

The correlation structure of (long-range dependent)

FGN process has been investigated extensively in

[13] [23][8], and can be summarized as follows.

Theorem 1: (Kaplan and Kuo[13]) Let z(t)be a FGN

process with Hurst parameter H (0.5 < Ii < 1). Let d~’s

be the (Haar) wavelet coefficients of z(t).Then

(1) for a given time scale j, d~’s are i.i.d. Gaussian random

variables with zero mean and variance 2~(2H- 1J(22(1-HJ –

1)02, where u is the variance of x(-t).

(2) for (ml + 1)2~1 – m22~2 large, where jl, j2, ml and

m2 are the dilation and the translation indices of two dif-

ferent wavelet coefficients respectively, the correlation be-

tween two wavelet coefficients is

2The explicite expressions on the variances for FARIMA processes
are too complicated to obtain. The variance of AR(1 ) process is given
in [17].
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Fig. 3. Solid line: Autocorrelation coefficients of the original process.

Dotted line: the normalized auto-correlation of wavelet coeffi-
E(d~d~+k)

cient, i.e., The left figure is for the AR(1) process.
‘d? adrn+k “

,

The right figure i; for the FARIMA(0,0.4,0) process.

where H’ = 1 – H.

We recall that the corresponding temporal auto-

correlation of Fractional Gaussian Noise decays at a rate

0( Ik I‘2(1-H)), where k is the lag between two samples

and 0.5 < H < 1. This rate leads to a divergent sum-

mation of the auto-correlations. The above theorem in-

dicates that the wavelet transformation has changed the

long-range-dependence in the time domain so significantly

that the summation of the correlation of wavelet coeffi-

cients converges to a constant. This is because the cor-

relation changes from mean revert (0.5 < H < 1) in

time domain to mean avert (O < H’ < 0.5) in the

wavelet domain. Figure (3) illustrates how drastic the

reduction is by comparing the autocorrelation function

of the original AIUMA(O, 0.4, O) process to the normal-

ized auto-correlation function 3 for d~ and d~+k, where

ARIMA(O, 0.4, O) is an asymptotically self-similar process

and is very similar to a FGN process.

C. The Correlation Structure of Wavelet Coe@cients of

SRD processes

For short-range dependent processes, there exist no pre-

vious results on the explicit correlation structure of wavelet

coefficients for discrete processes except the bounds for

some of the continuous random processes[5]. Therefore, we

derive the correlation wavelet coefficients given in a theo-

rem below.

Theorem 2: Let z(t) be a zero mean wide-sense-

stationary (discrete) Gaussian process with the auto-

correlation r(k), where r(k) = a2Pl~l with I p 1< 1, k is

an integer and U2 is the variance of z(t). Let d~’s be the

(Haar) wavelet coefficients of z(t).Then

(1) for a given time scale j, d~’s are Gaussian random

variables with a zero mean and a variance U2 (1 + & –

(1-$2’-’ ) + @J2~-’).

(2) for m12~1 – (rnz + 1)2~2 > 0, ll(d~’d~’) =

2-J12-U ~m12~1-(m2+l)2jz(l _ ~2~Z-1)2(1 – ~2i’-’)2(1~f11jc2.

The proof of the theorem can be found in [17].

This theorem shows that the correlation of wavelet coef-

ficients decay exponentially as Irnl 2~’ – mz2~’1, the short-

3 It can be easily shown that the time series dj~ for fixing j is sta-

tionary in terms of m. Therefore, the auto-correlation exists.

Fig. 4. Correlation Matrix

“FARIMA(0,0.4,0)”.
.

.

.

-m

.

!0

,,m,oa ,.,,

of

Fig. 5. Correlation Matrix of “AR(l)”.

est dist ante between supports of two wavelet base func-

tions, and the time-scale (dilation) index j increase. The

rate of decay is even faster than the corresponding auto-

correlation in the time domain. To illustrate the decay rate,

we compare the (temporal) auto-correlation for an AR(1)

process with that of its wavelet coefficient for jl = j2 = 1

in Figure (3). As shown in the figure, the correlation of

wavelet coefficient decays very rapidly as k increases.

Combining Theorems 1 and 2, we can see that the

wavelet transforms significantly reduce the temporal de-

pendence so that the complicated mixture of the short-

and the long-range dependence in the time domain may be

sufficiently modeled by a “short-range” dependence process

alone in the wavelet domain.

D. Empirical Studies on The Correlation Structure of LRD

and SRD

What short-range correlations need to be captured

among wavelet coefficients? Unfortunately, an answer to

this question can not be provided by the theoretical re-

sults given in the previous section, since they only hold for

I(ml – 1)2~’ – m22~z I large. To visualize the correlation

structure, the correlation matrices of ARIMA(O, 0.4, O)

and AR(1) are plotted in Figures (4) and (5), respectively.

A pixel (i, j) in the image of the correlation matrix repre-

sents the correlation between the i-th and the j-th wavelet

coefficients, where i and j are the (node) one dimension

index in the tree diagram (see Figure (1) for the tree di-

agram). The gray level is proportional to the magnitude

of the correlation. The higher the magnitude of the cor-

relation, the whiter the pixel in the image. The figure

shows that besides the diagonal line 4, there are 4 pairs of

lines having “visible” correlations. They correspond to

the correlation between -yk (s) and s, where ~(s) represents

the parent of the node s (see Figure (1) for illustration of

4 In order to have enough gray level to see more subtle details, the
diagonal pixels, which is always 1, is set to 0.5.

5We only consider K = 5 which has only 5 level in the tree diagram.
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the definition of y~(s)), and #(s) denotes the parent of

the node #-1 (s) with k being 1,2,3 and 4 counting from

the diagonal line. From the figures, we can conclude that

the most significant correlation is due to the parent-child

relationship. Since the complicated correlation in the time

domain actually concentrates on these types of correlations

in the wavelet domain, we can use a parsimonious model

in the wavelet domain to faithfully represent the original

traffic.

E. Modeling The Correlation Structure

We propose several models to model the partial correla-

tion among wavelet coefficients, ranging from the simplest

to the most complex. The simplest model assumes that

the wavelet coefficients are statistically independent. The

most complicated model is a third order Markov model.

Model 1: Independent model, which only models the

mean and the variance of wavelet coefficients. djrn’s are

chosen as independent Gaussian variables with zero

mean and variance Uj estimated from data at each j.

Model 2: First order Markov model, which models the

correlation between y(s) and s, i.e., the parent-child

relationship. This can be implemented as follows.

d~j = ajdv(.j) + bjwj , (7)

where aj and bj are the parameters to be determined

from data. wj is Gaussian noise with zero mean and

unit variance. ~(sj ) represents the parent of sj, where

sj is the one dimension index of a wavelet coefficient

(node) in the j-th time-scale (See Figure (1) for illus-

tration of the one dimension index of a wavelet coeffi-

cient.).

Mode/ 3: Third order Markov model, which models the

correlation among ~(s), Yz (s), v(s) and s. In the (cor-

relation matrix) graph, this model can match the first

two strongest lines as well as the (barely visible) line

near the diagonal , which represents the neighboring

relationship. Please refer to [17] for details on the al-

gorithm.

In terms of the complexity of the aforementioned models,

Model 1 only requires one parameter (the variance) Oj at

each level jc. Models 2 and 3 have two and four parameters

at each level, respectively.

F. An Algorithm on Generating Waveiet Models for Gaus-

sian Processes

The models on the correlation structure can now be in-

cluded in an algorithm to obtain wavelet models for a Gaus-

sian process.

Let ~(t) be the trace of length N from a Gaussian pro-

cess.

Algorithm 1

1. Perform wavelet transform on ~(t) to obtain d~’s

(wavelet coefficients of ~(t)).

2. Estimate the required parameters in the selected

wavelet correlation model (Section 3.5) from d? ‘s.

6The mean of djrn can be shown to be zero for a stationary process,

..0

. ..

.6

0.4 -

.,, -

., -

.- .~w-—... -.,. --. +w.
.

Fig. 6. Sample Correlations. “-”: AR(O.9); “-”: Model 3;

“-.”: model 2; “..”: model 1.
-1
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Fig. 7. Buffer Response. x-axis: utilization. y-axis:

loglO(Overflow probability). “-”: AR(o.9); “-”: Model
3; “-.”: model 2; “..”: model 1. The normalized buffer

size is 0.1, 0.5, 1, 10 from top down.

3. Generate coefficients d~ from the wavelet correlation

model with previously computed parameters for all m

and j.

4. Do inverse wavelet transform using the new wavelet

coefficients (d~ ‘s) obtained at the previous step to get

the synthesized traffic in the time domain.

To estimate the computational complexity of the algo-

rithm, notice that the computational complexity of the

wavelet transform (Step 1) and the inverse transform (Step

4) is O(iV) respectively. The computational complexity of

Steps 2 and 3 is also 0( JJ)7. Then the total computational

cost of the algorithm is O(iV).

G. Experimental Results

The algorithm is first used to evaluate the performance

of our correlation models. Sample paths of length 216 are

generated from an AR(1) process with Gaussian noise and

the AR parameter to be 0.9. We plot the sample autocor-

relation and buffer response in Figures (6) and (7), respec-

tively, for all three correlation models presented in Section

3.5. We observe from the figure that the simplest wavelet

model which neglects the dependence in the wavelet do-

main performs reasonably well. The models which capture

more correlations among wavelets only improve the perfor-

mance slightly.

To further test the performance of Model 1 which gener-

ates independent wavelet coefficients, we generate the cor-

responding wavelet models for FARIMA processes. A sam-

ple path of length 216 is generated from FARIMA(O, d, O)

(LRD alone) ford= 0.2,0.3,0.4, respectively, using a sim-

ulator in SPLUS. Such a sample path provides a time series

i(t) to be used by Algorithm 1. A synthesized time series

from the wavelet model is then generated by Algorithm 1

7A~.sume that o(I) time is needed to generate one Gaussian randOm

variable.
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Fig. 8. Autocorrelation functions for FARIMA(O,d,O) (solid

lines) and Algorithm 1 (dotted lines). d= O.2,0.3 and 0.4

from the bottom up.
,.,, “o.,.* ARIMA
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1

.2
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+

Fig. 9. The vertical axis: loglo (Loss Rate). The horizontal axis:

work load. The solid lines: FARIMA(0,0.4,0). Dotted lines:
Algorithm 1. The normalized bfier size: 0.1, 0.5,1, and 10 from

the top down.

using Model 1. The original and the synthesized sample

paths are both used to test the performance of the wavelet

model.

The autocorrelation functions estimated from the sample

paths are plotted in Figure 8. The loss rate is estimated

from the sample path from the original FARIMA process

and the wavelet model, we plot the log of loss rate versus

the work load for the normalized buffer size 0.1,0.5, 1, and

5, respectively. The results show that the auto-correlation

function and the loss rate due to the wavelet model are

very close to those due to the actual FARIMA process.

IV. WAVELET MODELING OF VIDEO TRAFFIC

A. The Video Sources

Two video traffic sources are chosen to test our algo-

rithms: (1) JPEG coded “Star Wars’) at frame level [l O],

and (2) MPEG-I coded videos at frame level. The trace

“Star Wars” [10] is obtained by applying JPEG-like en-

coder to each of 171,000 frames at an interval of ~ second

‘. Thisper frame of the 2-hour movie of “Star Wars”

source is used to test our model, since the source provides

rich variations in terms of scene changes. The second data

set is the MPEG coded video source. The source is con-

structed from MPEG-I encoded video sequences created

by Rose [21]. We choose a video called “Jurassic Park”,

which has 53332 frames at an interval of 40ms. A stan-

dard MPEG encoder generates three types of compressed

frames: I, P and B. I frames are compressed using intra-

frame coding only, while, P and B frame, in addition to

8Detailed description on the “Star Wars” trace can be found in [10].

intra-frame coding, allow using motion compensation tech-

niques. As a result, 1 frames are the largest in size, followed

by P frames and B frames. In addition, many MPEG

encoders have the same Group-of-Picture (GOP) pattern.

The GOP pattern in “Jurassic Park” consists of 12 frames

as IBBPBBPBBPBB.

B. Modeling the Video Sources

An extension to Algorithm 1 is needed to include the

following important properties of video traffic: (1) marginal

probability density functions of wavelet coefficients at each

time scale for non-Gaussian wavelet coefficients, and (2) a

mechanism to deal with the periodic structure in MPEG-I

video at the frame level.

Since the generated wavelet coefficients by Algorithm

1 actually have a Gaussian marginal density function, a

transformation is needed on the generated d~’s so that the

resulting d~ ‘S can have the same empirical density func-

tion as that of the data. Such a transformation can be

done easily through a method described in [11] with little

computation.

The MPEG-coded video traffic possesses periodic struc-

ture due to the repeated GOP patterns. To deal with the

periodic structure, we note that the inter frame redundancy

is reduced by using P and B frames. This results in I, P,

B frames with significantly different statistical characteris-

tics. Therefore, I, P, and B frames should be distinguished

from one another at the frame level for modeling. Above

the GOP level, no such distinction is needed. Algorithm

1 can be modified for MPEG traffic by taking the advan-

tage of wavelet modeling applicable at different time scales.

Specifically, we can use Algorithm 1 directly to model the

MPEG video traffic above the GOP level. Below the GOP

levelg, we treat wavelet coefficients with the same relative

position in a GOP pattern as a group, and assume those

wavelet coefficients have the same statistical properties.

We can then model different groups of wavelet coefficients

by choosing different parameters in the correlation models.

C. Experimental Results

To evaluate both the performance and the computational

efficiency of the wavelet models (Algorithm 1), we apply the

algorithm to obtain wavelet models for two video sources,

and to generate synthesized video trace. Models 1 (in-

dependent wavelet coefficients) and 2 (Markov-dependent

wavelet coefficients) have been used, and shown compara-

ble performance. The results are thus only presented for

Model 2. FARIMA models are used to model the sources

as well for comparison. In particular, FARIMA models

are chosen to have 25 AR terms and 20 MA terms. A

maximum-likelihood algorithm provided by SPLUS [22] is

used to determine all 45 parameters for the FARIMA mod-

els using the video trace data. Furthermore, the Gaussian

marginal distribution of the FARIMA process is shaped to

be the same as that of trace data by the same method

9We assume the GOP pattern is periodic as in most cases. If the
length of GOP pattern is not a power of 2, we will add zero size
frames to the end of each GOP to make it a power of 2.
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Fig. 10. “-”: Autocorrelation of “Star Wars”; “- -“:

FARIMA(25,d,20); “..”: Algorithm 2
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Fig. 11. Vertical axis: loglo (Loss Rate); horizontal axis: work

load. “-”: the single video source; “. .“: FARIMA(25 ,d,20);
“- -?? Algorithm 2. The normalized buffer size: 0.1, 1, 10,30

and 100 from the top down.

described in Section 4.2 to make fair comparisons. Synthe-

sized video traffic from both wavelet and FARIMA models

are used to obtain sample auto-correlation functions in the

time-domain, and to estimate the buffer loss rate. Since the

FARIMA(25, d, 20) gives very poor results on the MPEG

sourceio, the results are not given in corresponding figures.

The auto-correlation functions of FARIMA(25, d, 20) and

of the wavelet model are plotted in Figures 10 and 12 for the

single “St ar Wars” source and the “MPEG)’ source, respec-

t ively. As can been seen, the wavelet models have consis-

tently a better match to the auto-correlation functions than

the FARIMA models, especially for single sources. The rea-

son is probably due to the fact that the wavelet model can

mat ch the marginal distribution at different time scales.

The results on the loss rate of a single buffer due to each

source are given in Figures 11 and 13, respectively. It can

be seen that the wavelet model has a loss rate comparable

to that of FARIMA(25, d, 20) at the small buffer size, and

a better performance at the large buffer size.

As for the computational time, it takes more than 5-

hour CPU time on a SunSPARC 5 workstation for an

FARIMA(25, d, 20) model to estimate its parameters from

the data and to generate synthesized video traffic of length

171,000. It only takes 3 minutes on the same machine for

Algorithm 2 to complete the same tasks. The computa-

tional complexity to generate synthesized video traffic of

length IV is 0(lV2) for an FARIMA model, and only O(N)

for a wavelet model.

10This is dUe to the fact that the MPEG source is more complicatecl,

and therefore, a more complex FARIMA model is needed.
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Fig. 13. BuiYer Response. x-axis: utilization.

axis:
Y-

loglO(Overflow probability). “-”: “Jurassic

Park”; “-”: Wavelet Model. The normalized buffer size:
0.1,0.5,1,10,30,100 from the top down.

V. ANALYSIS ON THE BUFFER OVERFLOW

PROBABILITY

In this section, we will provide theoretical analysis on

the buffer overflow probability of our wavelet model. For

simplicity, we will present here the analysis for a special

case when the incoming traffic to the buffer is assumed

to be the Fractional Gaussian Noise (FGN). It has been

shown in Sections 3.4 that the independent wavelet model

can model FNG process and other process with Gaussian

marginal density functions. Since the independent wavelet

model neglects dependence among wavelet coefficients, it is

important to estimate the buffer overflow probability ob-

tained for the wavelet model, and compare with that for

the FGN process. To our knowledge, this has not been

done previously, and is a necessary step to validate our

basic idea on using wavelet models to model video traffic

using the buffer loss rat e as a performance measure.

Let i(t) be a FGN process which represents the actual

traffic to the buffer. Let ~(t) be the wavelet representation

of i(t ), where the wavelet coefficients are obtained through

Algorithm 1. Let p and u be the mean and the variance of

z(t), respectively. Suppose z(t) is fed into a single queue

at the beginning of the slotted time t for O ~ t < N, where

T = 2K. Let C represent the capacity. Let BN and BN be

the buffer sizes at the end of the (iV – 1)-th time slot due

to the synthesized traffic z(t)by the wavelet model and the

FGN process i(t),respectively. For the infinite buffer size,

BN and 8N can be expressed as [7] [19]

BN = SUp(~ cE(~ – i) – .@), (8)
s

‘i=l

BN = SU&@ – i) – SC).
s i=l

(9)

Then the probability of the buffer size over B, for the
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wavelet model, can be given through a theorem below. The support from National Science Foundation ((CA-

Theorem 3: The buffer overflow probability due to the REER) IRI-9502518 and ECS-93 12594) is gratefully ac-

synthesized (wavelet ) traffic a(t) satisfies knowledge.

where iV = 2K is the length of the traffic with K being a

positive integer. B can be expressed as

B=(c–p)29, (lo)

where /3 is assumed to be an positive integer k. for simplic-

ity,

The proof of the theorem can be found in [17].

This result shows that the simple wavelet model which

ignores the correlations among different wavelet coefficients

has the same Weibull decay as that of FGN in terms of the

loss rate given in [7] [19]. In another word, wavelet models

obtained by Algorithm 1 can faithfully model the FGN

traffic. Therefore, this result, as the first step, shows the

capability and performance of the ,wavelet models, and the

feasibility for using the models for network design.

We would like to point out that in addition to the as-

sumption for FGN workload, the theoretical result is lim-

ited by two conditions: (a) the buffer size Bt is only con-

sidered at time t = N instead of all t,and (b) the buffer full

size B is assumed to be 2~0 (C — p), which only represents a

subset of all possible values for B. Extension of the results

in a more general setting will be given in our future work.

VI. CONCLUSIONS

An important discovery from this work is that wavelet

coefficients of the video traffic, which has complicated

short- and long-range temporal dependence, are no longer

long-range dependent in the wavelet domain. Therefore,

the “short-range” dependent process can be used to model

the video traffic in the wavelet domain. This opens up

new possibilities for modeling, analyzing and controlling

the long-range dependent video traffic.

In this work, we have developed wavelet models for VBR

video traffic. The model provides new understanding on

the co-existence of the long-range and the short-range de-

pendence in the video traffic, and a unified approach to

capture both LRD and SRD simultaneously. The good per-

formance of the model has been obtained through extensive

tests on two video sources using both the auto-correlation

and the buffer loss rate as performance measures. The

computational complexity for developing the model and

for synthesizing a large volume of video traffic has shown

to be O(N), which is the lowest attained.
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