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Abstract


In this paper is constructed a new type of two-dimensional wavelet transform. Construction is based on lifting scheme. We transform 1D wavelets with symmetrical factorisation to their 2D counterparts. Comparison to existing similar 2D wavelet constructions is given. Application for image compression is given using progressive (SPIHT) and classical type  transform coder. 
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Introduction


In recent years wavelets showed their potential for lossy/losless image compression and belongs to the most   successful, e.g. FBI Fingerprint compression, progressive coders [3] . This paper is focused on the transform part of such image coders. New means to perform Wavelet transform (WT) offers Lifting scheme [1]. Novel type of 2D WT created from 1D prototype using Lifting and recursive quincunx subsampling, is showed in Section 3.  Its base functions have more isotrophy than tensor products of analogous separable transform. Transform is then compared to similar construction [5, 6] and used for image compression with SPIHT [3] and  classical type transform coder [2].


Lifting Scheme


Originally Lifting scheme was developed to improve properties of biorthogonal wavelets [4]. Later was proved that every wavelet can be factorised into lifting steps [7]. This realisation has many advantages such: speed up, in place calculation, simple treatment of boundaries , possibility of nonlinear operations and irregular lattices, invertibility.   Classical implementation of WT uses two band filter bank (FB) with recursion on its low pass (LP) [1, 2]. Equivalent polyphase representaion is depicted in Fig.1. 
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Fig.1 Analysys part of the 2 band filter  bank, i.e forward WT�a)classical case  b)polyphase representation with delay


Polyphase matrix � EMBED Equation.2  ��� is assembled from even and odd filter components. Output of the FB analysis part is then:





� EMBED Equation.2  ���                                   (1)


� EMBED Equation.2  ���                                 (2)


For any filter pair  � EMBED Equation.2  ��� with � EMBED Equation.2  ���, always exist factorisation  of� EMBED Equation.2  ��� [7] :





� EMBED Equation.2  ���      (3)


Equation (3) allows ladder realization  of � EMBED Equation.2  ��� by reversible “lifting” steps followed with normalisation as shown in Fig.2.
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Fig.2 Ladder structure of Lifting steps in forward wavelet transform 


Signal is partitioned into even and odd components that are then mutually predicted by � EMBED Equation.2  ��� (to zero signal in HP part) and updated by � EMBED Equation.2  ��� (to retain in LP part signal moments).  After normalisation is algorithm recursively applied to LP part. Backward transforms simply undone all ladder steps from right to left using reversed operators as in Tab.1. 


Lemma 1: Time reversing of � EMBED Equation.2  ��� and � EMBED Equation.2  ��� is equivalent to time reversing of analysis filters and switching to polyphase decomposition with advance. 


Use of Lemma is advantageous because of time reversed wavelet analysis filters (equal in biorthogonal case) and more natural even/odd signal partitioning. Example of lifting steps for CDF2.2 wavelet are in Tab.1. Here we see how  invertibility is assured even possible non-linearity of {.} operation e.g. rounding (we only add/subtract it). In  Fig.3 is detailed forward transform part with symmetrical extension at boundaries. Result of lifted WT can be reordered to classical Mallat’s form as in Fig.3 using partial bit reversal algorithm shown in [4]. 





Analysis filters�
� EMBED Equation.2  ���


� EMBED Equation.2  ���  �
�
Normalisation coefficient: � EMBED Equation.2  ����
�
Forward transform�
Backward transform�
�
si(0) = l j+1,2I


di(0) = l j+1,2i+1  


di(1) = di(0) +{-� EMBED Equation.2  ���si(0) -� EMBED Equation.2  ���si+1(0)}


si(1) =  si(0) +{� EMBED Equation.2  ���di-1(0) +� EMBED Equation.2  ���di(0)} 


g j,i   =  1/K di(1)


l j,i =  K si(1)�
si(1) = 1/K l j,i 


di(1) =K g j,I


si(0)  = si(1) +{-� EMBED Equation.2  ���di-1(1) -� EMBED Equation.2  ���di(1)}


di(0) = di(1) +{� EMBED Equation.2  ���si(1) +� EMBED Equation.2  ���si+1(1)}


l j+1,2i+1= di(0) 


l j+1,2i= si(0)   �
�



Tab.1   One level of lifted WT for  CDF(2,2) wavelet
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Fig.3  Forward lifting steps for CDF(2,2) with symmetrical extensions at signal boundaries and following coefficient reordering


Wavelets in two dimensions


Effective and natural way to realise WT in two dimensions is to apply 1D transform to rows and columns of signal. 
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Fig.4  Nonstandard decomposition in 2D wavelet transform


Most used is non-standard decomposition (Fig.4), where basis functions are then tensor products of 1D bases [2]. Realising 2D WT via lifting, coefficients can be reordered analogically to the 1D case. 


Another approach is to direct design two dimensional wavelet filters as in [5]. On rectangular lattice this correspond to 4 band  filter bank. Our approach  uses Quincunx sampling lattice [2] and complete one level decomposition in two step as shown in Fig.5. Similar construction was independently presented also in [5, 6]. 
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Fig.5  Lattices of the 2D WT using  Quincunx  and their recursion


To obtain LL band as in Fig.4 using Quincunx we must perform two steps. In Phase1 we predict/update coefficients on Quincunx lattice with the rest of them. In Step 2 we use Low pass output � EMBED CorelDRAW.Graphic.6  ��� of Phase 1 and similarly predict/update but with lattice rotated by 45(. LL band consisting low pass coefficients � EMBED CorelDRAW.Graphic.6  ��� is further recursively decomposed. Corresponding signal partitioning to frequency bands when used ideal half band filters is in Fig.6b.  After transform we can reorder coefficients according to Fig.6a, which is representation more suitable for compression methods. 
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Fig.6  Partitioning of 2D WT coefficients when used Quincunx �a) Coefficient reordering   b) Distribution of  frequency bands  


In predict/update phases can be used 2D neighbourhood  instead of 1D ones.  Natural way is to use ring neighbourhoods as depicted in Fig.7. 


In [5] authors computed 2D Neville filters (filters that implement polynomial interpolation) of various order on Quincunx lattice. In this article are used their normalized versions (K=1.41421). Their factorisation consist of one predict and update step. Predict coefficients are in Tab.2. Update coefficients are created from predict ones, multiplying them by -1/2. Basic wavelets of Neville Filters are depicted in Fig.9. 
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Fig.7  Predict/update neighbourhoods in 1D and 2D cases
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Fig.8  Transformation of neighbourhoods from 1D to 2D rings


O�
Numerators for different rings {ring(pixels in ring)}�
D�
�
�
1(4)�
2(8)�
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�
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�
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�
25�
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�
�
29�
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8�
23300�
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-75�
9�
-80�
216�
�



Tab.2  Ring coefficients for 2D Neville filters of various order (O) in predict phase. Coefficient = numerator / D . 


One to two-dimensional  transform


To design 2D wavelets there are many approaches how do construct them via transform from 1D case. Construction such as McClellan transformation or separable polyphase components are  described in [2]. 


Proposed transform is also of such type. Because of its properties I name it TORING. TORING is generalisation of approach in [6]. Builds 2D lifting steps that can be used for predict/update steps on lattices in Fig.5. Uses weighted coefficients of lifting factorisation of 1D prototype transform but instead of 1D neighbourhoods works with 2D rings as depicted in Fig.7 and Fig.8. Weight � EMBED Equation.2  ��� for lifting coefficient depends on number of pixels in actual ring:





� EMBED Equation.2  ���                                      (4)


Because of symmetry of the rings, correctly can be transformed only filters with symmetrical factorisation in each lifting step, i.e. filters where forward predict/update steps can be expressed as:





� EMBED Equation.2  ���        (5)


where   st  = 1…m (m is number of predict/update steps), � EMBED Equation.2  ��� is operator which returns value of j-th point in k-th neighbourhood of � EMBED Equation.2  ���, � EMBED Equation.2  ���and� EMBED Equation.2  ���are lifting coefficients associated with actual predict/update step and k-th neighbourhood of � EMBED Equation.2  ���. 


New two-dimensional version of forward  predict/update steps can be expressed as follows:





� EMBED Equation.2  ���   (6)


where � EMBED Equation.2  ���is 2D neighbourhood operator as in Equation  (5),  � EMBED Equation.2  ���is weight for k-th ring. 


Thus can be constructed 2D versions of many biorthogonal filters. To implement them we need to know  � EMBED Equation.2  ���and � EMBED Equation.2  ���. Tab.3 includes in addition to CDF(2,2) also examples for Deslauries-Dubuc wavelet with 4 vanishing moments DD(4,4) and very known 9-7 filter also with 4 vanishing moments in analysis  and  synthesis high pass filter. 





Type�
Lifting coefficients�
K�
�
CDF(2,2)�
� EMBED Equation.2  ��� , � EMBED Equation.2  ����
� EMBED Equation.2  ����
�
DD(4,4)�
� EMBED Equation.2  ���,� EMBED Equation.2  ���


� EMBED Equation.2  ���, � EMBED Equation.2  ����
� EMBED Equation.2  ����
�
FBI 9-7�
� EMBED Equation.2  ���� EMBED Equation.2  ���


� EMBED Equation.2  ���


� EMBED Equation.2  ����
1.149604398�
�



Tab.3  2D Lifting coefficients and normalisation for various filters


As neighbourhood operators can be used every meaningful operator, e.g. slanted abscissa to focus on  directional information in image. Then one must be careful because of rotating sampling lattice in Phase 2 of decomposition (Fig.5). 


For correct treatment of signal at boundaries we can build modified boundary predictors as  it was in  1D case. 


Properties of TORING transform


One of primary motivations for developing this 2D lifted  non-separable transform was to create transform, that can use all pixels in neighbourhood for prediction (one predict step in 2D Neville filters uses only half of them). Such transformation should better capture energy concentration. Further, true 2D transform can have more anisotropy and thus distribute error (when using in coding application) equally in all directions.  This transform should be based on lifting scheme which has many useful properties [4]. TORING satisfies  these requirements. 


Operation count is of the same order as in separable case.  When using lifting only with predicting ring1, we need 1.5 times more operations (when using higher order rings the ratio is higher). Comparing TORING to Neville filters shows computational advantage, see Tab.5 .


Many useful properties are implicitly assured because of relying on lifting scheme: in place calculation, boundary solutions, possible use of non-linear predictors …


The TORING-type transforms are biorthogonal, because lifting preserves biorthogonality and recursive Quincunx create trivial biorthogonal basis. 


Using higher dimension rings we can extend this transformation to arbitrary dimension. 


Wavelet basis function for all used transforms are depicted in Fig.9. Here we can observe changing smoothness and shape. Can be observed, that when using TORING   algorithm, increasing order of filter  does not increase smoothing significantly. Only decorrelation and predict ability  are  increased. � EMBED Equation.2  ��� 
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Fig.9  Basic wavelets for various 2D wavelet transforms:�a) Neville order 4    b) Neville order 8    c) TORING CDF(2,2) �d) CDF(2,2)  e)TORING DD(4,4)  f) DD(4,4) �g)TORING FBI 9-7  h) FBI 9-7


For image compression purposes are in addition smoothness also important decorrelation  and energy compaction properties of wavelets. This we can objectively measured with Gain of Transform Coding � EMBED Equation.2  ��� [1]: 


 � EMBED Equation.2  ���                                      (7)


Where M is  number of bands and � EMBED Equation.2  ���is variance of coefficients in j-th band. Results for all used transforms on  test images are showed in Tab.4.  As we can see, TORING 9-7 filter has highest gain among all them.  


Approximation property of transforms is also important  and  is showed  in Tab.6. There we can observe that Neville filters are the best  (they were designed to interpolate polynomials). 





2D Transform �
� EMBED Equation.2  ����
�
(non-separable)�
Lena 512x512�
Goldhill 512x512�
�
TORING CDF(2,2)�
8.99�
7.83�
�
Neville4�
8.95�
8.87�
�
Neville6�
9.39�
9.55�
�
Neville8�
9.24�
9.53�
�
TORING DD(4,4)�
8.55�
8.21�
�
TORING FBI 9-7�
12.95�
12.58�
�



Tab.4  Comparison of � EMBED Equation.2  ��� of 2D lifted non-separable transforms 


2D Transform �
multiplications�
additions�
�
TORING CDF(2,2)�
1�
4�
�
TORING DD(4,4)�
2�
4�
�
TORING FBI 9-7�
2�
8�
�
Neville 4�
2�
14�
�
Neville 6�
4�
27�
�
Neville 8�
7�
51�
�



Tab.5  Number of operations  to transform one image point  in phase 1 for 2D non-separable Wavelet transforms (without energy normalisation). 


2D transform�
Signal to Noise Ratio (PSNR) in [dB]�
�
�
ZL=1�
ZL=2�
ZL=3�
ZL=4�
�
Neville 8�
35.58�
29.68�
25.67�
22.63�
�
Neville 6�
35.46�
28.62�
25.61�
22.59�
�
DD(4,4)�
35.33�
29.61�
25.59�
22.56�
�
FBI 9-7�
35.27�
29.58�
25.57�
22.55�
�
Neville 4�
35.14�
29.47�
25.48�
22.49�
�
TORING FBI 9-7�
34.96�
29.42�
25.46�
22.49�
�
TORING DD(4,4)�
34.71�
29.26�
25.31�
22.35�
�
CDF(2,2)�
34.52�
29.21�
25.31�
22.33�
�
TORING CDF(2,2)�
34.08�
28.96�
25.09�
22.15�
�



Tab.6  Approximation error in [dB] of 2D  wavelets (ZL is number of levels where coefficients were zeroed) using LENA image


�



Transform Type�
Signal to Noise Ratio (PSNR)  in [dB]�
�
�
 bpp = 2�
bpp = 1�
bpp = 0.5�
bpp = 0.25�
bpp = 0.1�
bpp = 0.05�
bpp = 0.01�
�
TORING CDF(2,2)�
43.72�
38.9�
35.45�
32.51�
28.88�
26.48�
21.77�
�
NEVILLE 4�
44.21�
39.62�
36.26�
33.15�
29.27�
26.66�
21.94�
�
NEVILLE 6�
44.35�
39.76�
36.46�
33.33�
29.33�
26.70�
22.14�
�
NEVILLE 8�
44.20�
39.71�
36.48�
33.36�
29.34�
26.72�
22.17�
�
TORING FBI 9-7�
44.59�
39.82�
36.3�
33.16�
29.25�
26.77�
22.17�
�
TORING DD(4,4)�
44.1�
39.36�
35.9�
32.89�
29.14�
26.58�
21.83�
�
separable CDF(2,2)�
44.29�
39.74�
36.56�
33.38�
29.75�
27.12�
22.28�
�
separable DD(4,4)�
44.75�
40.24�
37.13�
33.98�
30.14�
27.42�
22.49�
�
separable FBI 9-7�
45.06�
40.4�
37.21�
34.1�
30.32�
27.49�
22.6�
�



Tab.7  PSNR for LENA image (512x512 pixels, 8 bpp) of different 2D WT using SPIHT (bpp is compression ratio in bits per pixel).�Best cases are shaded, best is the darkest.


�
Application in image compression


With proper coefficient reordering we can substitute transforms in lossy/lossless compression algorithm with  non-separable transforms. I used state-of-the-art embedded wavelet image coder SPIHT [3] modified to incorporate with 2D non-separable lifted transforms.  Embedded means, that that all codings of the same image at lower bit rates are embedded in the beginning of the output bit stream for the target bit rate. Coding is accomplished in 3 basic steps:      





discrete wavelet transform 


coefficient bit plane coding 


adaptive arithmetic coding





Bit plane coder expects coefficients structured in spatial orientation trees as shown in Fig.9, which represents parent-offspring dependencies of wavelet coefficients. Effectivity depends on ability to quantize trees (or its parts)  to zero, according to their significance. 





� EMBED CorelDRAW.Graphic.6  ���


Fig.10  Expected parent-offspring dependencies of WT coefficients


The optimal solution I found, how to adapt coefficients of presented non-separable transforms is to reorder them according to Fig.6a.  Compression results for test image are given in Tab.6. TORING 9-7 performs among the best non-separable wavelets used. When looking back at Tab.4 we could expect that 9-7 filter will be clearly the best. But in lossy compression we must take in account also approximation properties (Tab.6) where Neville filters are the best. This in turn is related to the wavelet smoothness (Fig.9). 


�





Fig.11  PSNR for TORING wavelet and their separable versions when used in SPIHT algorithm


Used TORING-type wavelets exhibit PSNR by �0.2  -  1dB worse than their separable prototype depending mostly on the test image used (see Fig.11). This can be caused by SPIHT algorithm, which was designed for use with separable  transform. 


To find out  if this is true, and to obtain results also from another type of wavelet coder  I test all mentioned wavelet transforms in  classical type of  transform coder: Transformation - uniform quantization - bit allocation - entropic coding of coefficients (Huffman coder). The differences of PSNR were similar to ones in Fig.11, i.e.  this drawback is property of the presented transform scheme. 


Objective performance measure such as PSNR is not the best judge in image compression. It captures only average properties but not shapes and artefacts in image. In Fig.12 is depicted part of LENA image degraded by  compression algorithm (SPIHT). High compression ratio is used to cause artefacts be more visible. One can see how separable transform spread energy along x and y directions that image shapes are less recognisable. On the other side non-separable transform introduce peaks, depending on smoothness of basis functions. But  image is still more readable than in the separable case.  


�
�a)�
�b)�
��c)�
�
�d)�
�e)�
��f)�
�



Fig.12  Central part of LENA Image compressed at 0.01 bpp (compression ratio 1: 800) using SPIHT: a) Original   b) FBI 9-7 with standard decomposition   c) CDF(2,2) with standard decomposition   d) Neville 8   e)TORING 9-7   f)TORING CDF(2,2)


�
Conclusion


In this article was developed a new type of non-separable biorthogonal wavelet transform TORING based on lifting scheme. Kernel is created from given 1D prototype that satisfies certain conditions. This is generalisation of approach  in [6]. In transform algorithm we use recursive two phase quincunx subsampling. To the same transform algorithm were adapted true two-dimensional Neville filters from [7]. Both (Neville and TORING) have more anisotrophy and capture energy in image better that comparable separable filters. This causes  that  even having worse PSNR of compressed images, images have visual improvements. In addition TORING has considerable computational advantage over Neville filters (depending on prototype filter used). 
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