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Abstract

In this article we present simple and powerful algorithm for low-pass (LP) filtering of image data. The idea came from lifting scheme (developed for wavelet transform). Filters of all wavelet filter banks can be factorised to the elementary filters representing “lifting steps”.  Filtering algorithm has ladder structure similar to lifting steps structure, but where we don’t predict, we only update samples to obtain uniform LP behaviour in all data samples. High-pass (HP) information is not cancelled, is only stored in decimal places of LP coefficients. By “lossless” we mean, that no data loss occurs in filtering stage. Lossy is storage of incomplete LP coefficients (without all decimal places). There are many degrees of freedom how to choose LP filters. We present here one simple construction of  LP filters with some additional degrees of freedom. 

1. Introduction

Classical approaches to data filtering use filters in time domain (convolution) or use simpler data manipulation in some transform domain [1]. Using wavelet transform (WT) [2] [3] are these approaches closely connected, because standard WT computation algorithm is based on filter bank framework. There exist also a faster factorized WT computation algorithm known as "Lifting scheme" [4] [8] .  Lifting scheme has many advantages over the standard filter bank algorithm.  For our purposes are most important following:

· simple invertibility

· possibility to use non-linear operations (e.g. rounding in integer transformations)

· in place calculation (no need to use auxiliary memory for data)

All operations are done on the data using ladder structure depicted on Fig.1. In order to divide data to two parts with low-pass (LP) part and high-pass (HP) behaviour we first split data to two sets (odd and even coefficients).  The neighbouring pixels in these sets are then mutually predicted (to zero HP set) and updated (to keep all important characteristics in LP set). Predictors used for these operations are in fact impulse responses of "elementary" filters, i.e. factors of filters of equivalent filter bank [8]. In reconstruction are all these "lifting  steps" simply undone using forward steps in reversed order and with reversed signs.


[image: image1.wmf]
Fig.1 Replacement of two band filter bank using lifting scheme and its ladder structure in detail

2. Proposed filtering algorithm

Classical approaches for data filtering generally don't allow to reconstruct original data from filtered data.  Our algorithm allows exact data reconstruction (under simple circumstances). In fact HP part of signal is not cancelled, but only partially suppressed and hidden in decimal places of LP part samples. All information loss only occurs at the end, when only integer part of filtered image samples is stored (until storage we are able to restore original data exactly). This is made in natural and fast way using ladder structure similar to lifting scheme structure. Here we don’t predict, we only mutually update samples of both data sets to obtain uniform LP behaviour in all data samples.  Ladder structure of the proposed algorithm is in Fig.2a. 

[image: image2.wmf]
Fig.2 Ladder structure of  proposed filtering algorithm (a), spatial shape of predictors U and numbering of their coefficients u(i) for non separable filtering using Quincinx subsampling [5, 6, 7] and 1D predictor used in separable filtering  (b)


In each filtering step we perform (for all samples in given set) weighted average with neighbouring samples from the other set. Entire weight is given by predictor U and weight w . Weight w introduces one degree of freedom and assures proper dynamic of data. For proper normalisation we require:
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where u(i) are predictor coefficients, O  is order of predictor (i.e. number of corresponding filter taps -2 ) that means order of polynomic function which can be perfectly predicted. We don't impose any other conditions for predictor coefficients. Examples of predictor U shapes are in Fig.2b. In order to assure proper dynamic of data  there are introduced multiplicators in lengthwise branches. We don't accept information loss, so we need to work with real numbers, where the number of bits k needed for storing coefficient's decimal places grows as:

[image: image5.wmf])

1

(

log

2

+

=

w

L

k



[image: image6.wmf]+

Î

Z

w


where L is number of performed filtering steps. In predictor U we should use rounding that keeps k decimal bits.

When iterating this algorithm all samples converge to signal mean. Convergence is faster when w grows, but value differences between sets of odd and even coefficients grow too (visually more disturbing).  

Filtration algorithm can be used as separable (nonstandard decomposition) or non separable (e.g. using Quincunx subsampling [dize]).  Big advantage with respect to classical approaches is natural signal handling at his boundaries (inherited form lifting scheme) so there don't exist disturbing boundary effects . Running whole algorithm backward we can also get HP filtered image. 


We can recapitulate properties of proposed filtration algorithm as follows (with assigned + for positive and - for negative property) : 

· perfect reconstruction possible






+

· fast and simple computation via lifting





+

· simple signal treatment near boundaries





+

· arbitrary image size in both directions (not only powers of 2)


+

· value disproportion  between mutually updating pixel sets (odd and even pixels)
-

3. Filtering results

As a test cases for evaluation of the proposed filtration method we choose the simplest predictors, where u(i)=1/(O+1). Filtering algorithm for O=1 is also showed in Fig.3. Note the similarity to lifted WT using CDF(2,2) wavelet. In Fig.4 and Fig.5 are presented filtration results using syntetic and natural image and compared with classical filtration algorithm which uses Gauss filters. 
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Fig.3 Simple example of filtering process with predictor O=1, u(0)=1/2,u(1)=1/2
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a) Original
b) Gauss filter (order 2)
c) Gauss filter (order 4)
d) Gauss filter (order 6)
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e)Qfilter O=1,w=7,N=4
f)Sfilter O=1,w=7,N=2
g)Qfilter O=3,w=7,N=4
h)Sfilter O=3,w=7,N=2
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i)QfilterO=1,w=1,N=12
j)Sfilter  O=1,w=1,N=6
k)Qfilter O=3,w=1,N=12
l) Sfilter O=3,w=1,N=6

Fig.4: LP Filtration of edges in simple geometrical image. Rem.: Qfilter – nonseparable filter (using Quincunx), Sfilter – separable filter (nonstandard decomposition), O-filter order, N=number of iterations, w = filter weight 
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a) Gauss filter (order 6)
b) Qfilter O=3,N=14
c) Qfilter O=1,N=14
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d) Qfilter O=1,N=6
e) Qfilter O=1,N=2
f) Original
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g) Qfilter O=1,N= -1
h) Qfilter O=3,N= -1
i) classically sharped image

Fig.5: Filtered eye part of the standard test image “lena”: a)-e) LP filters, f) original g)-i) HP filters

From Fig.4 we see that separable filtration smooths edges faster than Quincunx based non separable filtration. On the other side, value disproportion when using separable filtration  (stripes) is more visually disturbing  than checkerboard disproportion when using Quincunx based non separable filtration. Value disproportions are clearly visible only when zoomed more than 300-400%.  

By running filtration algorithm backward (HP filtration) we can sharp the edges. When using more iterations the filtration process is no more effective and diverges very fast (3-5 iterations). Obtained results are showed in Fig.5.

4. Conclusion

We presented here a new image filtering algorithm which has ladder structure similar to structure present in computation of wavelet transform using lifting scheme. Many advantages of this approach are inherited from lifting scheme framework. We tested only simple set of filters implemented using proposed algorithm. Visual evaluation showed that they are comparable to other  existing smoothing methods.  Bacause of their simplicity and fast implementation they can be good alternative to the classical filtering approach. 
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