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In this paper we present new and flexible corpusetanethod for prediction of intonation from textieh
was implemented as part of Slovak TTS framewold BtEI-STU in Bratislava. Proposed solution is based
classic technique — Viterbi algorithm. Intonatioontours are generated by concatenation of selgiéamgs of
real FO contours. Selected sequence of units nuesnihe overall cost that combines two types ahetgary
costs — target and concatenation cost. Whereascdtmulation of concatenation cost some simplifying
assumptions have been applied in order to lowempcoation costs, on the other hand calculation @fetacost
can achieve arbitrary complexity thanks to confiduie set of contextual rules. Main advantage ofamproach
is the ability to produce alternative melodic camgiven the same text input without the need amipulate
FO. We argue that the optimal place where varigbshould be introduced is not at the phonetic lleve
(manipulation of FO) but at some more abstractllézg. adjustment of feature weights in particudantexts
and thus affecting the selection process). In olut®n the rules affecting weights used in compateof target
cost are transformed from functional requiremertignce the presented method can be considered as
functionally-driven approach.
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Croatian trandation of the title. If one of the authors is a native Croatian speakem please type the
abstract translation in Croatian here. Otherwiseag® leave this paragraph as it is. The editordaki care of
the translation.

Ovo je primjer saZzetka. Ovo je primjer sazetka. Qeqrimjer saZzetka. Ovo je primjer sazetka. Ovo je
primjer saZetka. Ovo je primjer saZetka. Ovo jenjer saZetka. Ovo je primjer saZetka. Ovo je pniraggZetka.
Ovo je primjer saZzetka. Ovo je primjer saZetka. @primjer saZetka. Ovo je primjer sazetka. Ovprjenjer
sazetka. Ovo je primjer saZetka.
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may or may not be straightforward, single or mistip
1 INTRODUCTION layers of representation may be chosen and differen

Synthesis of adequate prosody is a key element f@enerative techniques may be employed. Therefdoede
pursuit of attaining natural sounding speech sgithe proceeding with actual presentation of our own epph
Every TTS system must address the problem of piagic @ brief overview of intonation modeling and synibesill
prosodic parameters from text (= from informatibattis ©€ given in chapter 1. Chapter 2 contains detailed
available as a result of text analysis) in some.vfgm  description of proposed intonation synthesis methitd
among different phonetic variables that materializdirst the theoretical justification of basic priptés is
various prosodic features probably the most prontine Provided following with the description of the atghm
variables are segment duration and fundamentdiself. Implementation details are briefly overvisvand
frequency (F0). Segment (or phone) duration reglizefinally the experiments performed with implemented
timing aspects of prosody (e.g. rhythm, tempo, etc___solution are presented. In chapter 3 the solutisn i
whereas FO is the principal correlate of speectodyel summarized and further research steps are outlined.
(intonation). Mutual interplay of these variablesspeech 1 1 |ntonation M odeling Overview
enables realization of number of linguistic (stress

boundaries, prominence, focus) and non-linguistiodd, various functions are supported by prosody withyivay

attltudde, etc...)bfunctl((j)ns.t Tr;e processtlof syfn thexﬂs_ weight. Synthesis of intonation must always takto in
prosody can De ‘understood as crealion of mapping... . specifics of the target language.

between linguistic and acoustic domain. The mapping

In each language the prosody has a different mte a



Traditional intonation models are tightly coupledhw mapping is complex and of many-to-many character.
phonological theory of the language. They are based Single sentence can be uttered with different aedde
finite set of abstract elements/symbols that cosepthe melodic patterns. On the other hand analysis démdift
basic prosodic inventory of the language. This atemds FO contours can result in the same sequence of
for more current models such as the widespread ToBihonological symbols. In phonological approaches th
scheme [12] which is inspired by Pierrehumbert'sprediction of symbols from text is usually strafgimvard
intonation phonology whose fundament is the usévad  because the rules that govern the placement amdadile
distinctive tones (H — high and L — low). The maincombinations of symbols are part of the phonoldgica
challenge for phonological models is to find medtan model itself. This is however not the case forsgthbolic
of converting abstract representation into FO targe models, for example INTSINT [14] offers just a syatib

The actual measured or estimated course of FQOeis thinventory and the phonological model must be deywedo
starting point for phonetic modeling. The aim ofdebng  on top of it. More complicated part is the convensirom
is to find optimal approximation of real FO contsur symbols to FO targets. This can be achieved, famgte,
Usually some fitting procedure is employed to eatan by means of linear regression [3],[14].
guantitative parameters of model components. For Data-driven synthesis approaches are usually used i
example Fujisaki model [6] is based on two types ofonjunction with phonetic models. During prepanatio
components (phrase component and accent componestage some automatic analysis procedure is pertbrme
whose contributions are summed in a superpositionadlater at synthesis time standard techniques fopusr
framework. based speech synthesis are used (e.g. Viterbilsearc

When corpus-based techniques rose into prominend@ART-based clustering [1][4], neural networks [2].
there emerged a need for intonation representdtiah  Unlike standard speech synthesis the solution for
could be obtained by automated procedure due g lar synthesis of intonation must cope with the fact thare
amount of speech data [13]. Output of such proeeduris no basic unit of prosody. Most systems use Isidla
could be used in unit selection synthesis framework sized units as a minimal building blocks. Largeiitsin
Some phonetic models, e.g. MOMEL [8], don't have th (intonation groups / stress groups / accent gro@ps)
ambition to capture or explain the relation betweerusually constructed as sequences of syllablesusitally
acoustic and linguistic domain. Their aim is just t single stressed syllable [7][9].
provide efficient and non-redundant coding (stylma) Some methods do not use any sort of intonation
of real FO contours. Usually they serve as the $isp for modeling at all. Sampled real FO contours are used
further analytical modeling. One of the main betsefif  training the generators and at synthesis time theafgets
having low-level FO stylization is removal of are directly predicted by the synthesis engine dase
microprosodic perturbations. Although microprosady linguistic input. While some methods use the speech
important for perception of naturalness it is ienglnt corpus to derive “average” FO shapes [15], othethots
with regard to global melodic pattern. attempt to exploit the variability stored in corpts

Perception-based models are special subclass of Ffroduce variable synthesis either by directly mpdd
based modeling approaches [10]. In perceptual nmagdel FO within the scope given by calculated probability
only FO movements which produce audible change argistribution [5] or by intervening into the unitlsetion
relevant for the model. If neglecting of certain $ttape process [11].
does not change its perception it can be omittech fihe
model. 2 THEORETICAL JUSTIFICATION OF PROPOSED M ODEL

Although the majority of intonation models is At present there exists no model of Slovak intawati
concerned with grasping of the intonation formgehare  gyjtaple for usage within corpus-based —synthesis
a few different approaches where the prosodic fands  framework. Existing theory of Slovak intonatiomiginly
the starting point. An example of such approacBRE  prescriptive and descriptive. Therefore we were not
[2]. In this approach there are no prior requirefS&n  |imited nor biased with the choice of model to kxed
the shape of FO. Resulting FO contour is @ merssgro gyjitable phonological model was not at hand and we
output of a number of functional generators. Geioesa opted not to use any phonetic model apart fromch&8i
themselves are trained on speech corpus. stylization. Design of our synthesis method wagpiiresi

1.2 Intonation Synthesis Overview by three basic principles:

Crucial task for both types of models — phonetid an ; IF:’erfotrm rr:anlpula_tlon OftFO ash“ttll?j asdp_ossmlﬁ.
phonological — is to find the link between lingidst ' unt?]mrja requirements  shou rive ©
description and fundamental frequency. In reality t SYnthesis process.



3. Recorded speech corpus contains rich variability of the sentence prefer candidate syllables from
of prosodic realizations that should be utilized. final prosodic words of the sentence.

In order to avoid modification of FO we should &y Such simple requirements although very simple and
much as possible to utilize the benefit of haviaggé probably incomplete can be directly taken into
number of natural FO contours in the speech corfyus. consideration during unit selection process.
data-driven approaches the upper bound of quality o For synthesis of intonation the optimality criterits
synthesis is only determined by the quality oftitaéning  rather tricky problem because, as was already dstate
corpus. If realizations of some prosodic feature arsingle sentence can be uttered with many acceptable
completely missing in the corpus we would not bledab  intonation patterns. In many TTS systems the coostm
produce it by using any method. On the other hdnd iof intonation prediction module is motivated by #féort
there are multiple instances of particular prosddature to obtain some kind of ,average® = most probable
in the corpus we are given the luxury of choicde&®n  contours. We take different approach — we try ibizat
of the optimal sub-contour must, however, alwayeta the richness of prosodic variations stored in theesh
into account all other requirements for given sectés  corpus not for the purpose of obtaining statisticaldel
prosodic features. Thus the resultant synthesizd Fout to permit alternative intonation contours be
contour must be globally optimal — with respectalb  synthesized. So, in our approach the answer to an
raised requirements. At the same time negativectsffe interesting question: ,How to achieve intonation
caused by concatenation of sub-contours must beariability?“ would be the most trivial one: We sel
minimized as well. alternative intonation pattern from the corpus. Wiak

These considerations lead to further questions: kow that variability achieved by alternative selecti@s lower
define optimal selection? What requirements shdwdd risk of producing ,weird* melodic patterns as oppdgo
raised? We were inspired by approach of SFC mdjel [ approaches where variable intonation is obtained by
which comes out of a small set of prosodic funaion modification of FO values on the basis of statistimdel.

Each of these functions has a defined scope — nuafbe
syllables on which it has impact. For example let's3 SYNTHESISALGORITHM

syllables before and M syllables after the actuaktandard unit selection technique based on seach f
boundary. In SFC _framework _each prosodic functi®n igptimal sequence of units. Output FO contour is
produced by trained functional generator (neuratonstructed by concatenation of partial FO subaanst

network). The most important input for the funcibn pasic unit of synthesis is FO segment whose boigslar

generator is the actual scope and syllable’s mositi are aligned with boundaries of the voiced partytifible.
within actual scope. Overlapping contributions afigus

functional generators are summed up within31 Descriptive Features

superpositional framework. We chose different gatien Each unit in the corpus as well as each unit of the
mechanism but the starting point is very similar.our ~ synthesis target is described by a vector of binary
approach we define functional requirements andeatures. We chose the binary form of features &or
transform them into rules affecting unit selectimocess. number of reasons. Firstly, all features can beakgu
For example let's assume that original functionalhandled. Furthermore, conditions based on binahyesa
requirement states: “Let the sentence have typiedbdic can be formulated more easily and are usually more
pattern for yes/no question!”. Such requirement ban comprehensible. Finally, operations on binary saqes
broken down as follows: What is typical for melodic can be implemented efficiently. All features neetiedhe
patterns of yes/no question? It is the typicatfisi-(fall) ~ transformed into binary form. For example the ovégi
pattern placed on the subject of the question. Fdeature — number of phonemes in a syllable — waker
simplicity let's assume that position of the subjgc down into 5 binary features in the form: “Does the
standard yes/no question is at the end of the semte Syllable consists of at least X phonemes?” where
Hence the transformed requirements can be forntilate X = 2...6. Original features (before the transformation

following points: was applied) describe the following attributes:
a) For target syllables from the final prosodic word - Number of phonemes in syllable
of the sentence always take into account only -  Number of syllables in prosodic word
candidate syllables from sentences of the same -  Number of prosodic words in phrase
type. - Position of syllable within prosodic word

b) For target syllables from the final prosodic word - Position of prosodic word within phrase



- Part of speech of corresponding word The target cost weighted by, is computed as
- Characteristics of the syllable (syllable structure follows:

properties and length of onset and coda, distance

between neighboring nuclei, presence of stress) T(S U) =sUu 4)
In total 43 binary features were used By default (without integration of the contextualeas
p= (pl, Py p43). Only such features which can be introduced in subsectioBrror! Reference source not

found.) all weights are equal to 1 so basically the hjinar
fields representing two units being compared ard>&0
3.2 Viterbi Algorithm and the count of 1s is obtained. Hence whenevetwbe

For the search of optimal sequence of candidatagnits do not match in n-th feature the candidate is
Viterbi algorithm was implemented. Viterbi search i penalized by incrementing the target cost by 1.
performed in a sequence of steps. Each step cordsp Concatenation cost should be defined with cautiom d
to single target syllable. Set of candidate syédabls to large number of its computations in the cour$e o
examined in each step and number of optimal subdlgorithm flow. For the sake of computational siiity
sequences — from the start leading to each camdidate defined the concatenation cost only on the bakis

syllable are kept. After completing the t-th stelpew N, Whgther the two units are natural nelghbors in rthei
original contexts. If yes, then concatenation gestero

candidate syllables were examined exaddy optimal otherwise the concatenation is always penalized by
sub-sequences are kept for further processingyksids- ~ addition of fixed experimentally derived constant.
sequence involving j-th candidate unit in t-th stisp
characterized by certain value of total cost oletdiby
following formula:

estimated or derived from input text were considere

3.3 Contextual rules
Synthesis algorithm formulated in its basic formswa
. further enhanced by introducing the contextualguilehis
d (ut,j ) - l<r2|Nr11[5t—1(ut—1,i ) +g (L{ ENELY )J (1) is the key concept which enables flexibility inrfarlating
functional requirements and variability in the unit
selection process. All rules are defined on a det o
descriptive binary featureépl, Pos...s pN). Some rules
a(ul—li’qvi)_T(S’q'i)-'-‘](ul—li'ufvi) @) may be formulated conditionally. In these cases the

Target cost represented by ter'Fr(q,ut j) expresses conditional expressions can also be only basedhen t
' same set of features:

The increment of total cost is given by te@dn which
consists of two types of cost:

how well does the candidate syIIabu;Yj fit to target <condition>' b =value 5)
. i -

syllable §. On the other hand concatenation COSt There are three types of rules. Strict requirenant

\](u[_l’i,ut’j) penalizes possible concatenation oféxact match on j-th feature may be enforced by

) ) formulating so called mandatory rule where the dtborl
candidate syllables}_;; and U, ;. The overall optimal g gptional:

sequence has the lowest total cost out of all egiprences MANDATORY_ RULE:M (pj ,<condition>).

considered in the final step. In order for the &l to . . I ;
work efficiently and as desired the definition afget and If the condition is satisfied then only candidate
concatenation cost is crucial. Input to our ViterbiSyllables that have exact match on value of featpre
algorithm is a sequence of M syllable-sized unitefthe  can be considered for unit selection. An example of
input sentence <5yh'sy|2,___,5y|M> where each loosely formulated mandatory rule: ,If the curreatget
syllable being synthesized occurs in the first pdis
word of the sentence then consider for the seleaiidy
S:<31,52,---.SM> consisting of N features each —those candidate syllables that are stressed (iftatget

mom m syllable is stressed) or unstressed (if the tasgkdble is
(Sl 'S "“’SN)' The target cost computed between tWoqtressed).*. Applying the mandatory rule narrdes
feature vectors in the basic form is given by tieofving  number of candidate units. Exact opposite to mamglat
formula: rule is an ignore rule with optional condition:

T(s,u):iijj (sj,uj) 3) IGNORE_RULE: I(pj,<condition>).
j=1

By introducing ignore rules the j-th featumj may be

syllable is described by feature vector



completely omitted from target cost computatiorthé  The average sentence length is 5 words, the minimal
condition is satisfied. This means that candidatésu sentence length is 1 syllable and the maximum seate
would not be penalized for mismach based on vafue dength is 14 words. It was carefully manually consted
p;. in order to contain limited number of different poalic
features. All sentences are simple yes/no questmis
are composed of single syntactic phrase. No syotact
o ; _ . markers, enumerations or parentheses were allowed.
penalization fOT feature value mlsm.a.tch I certainypije e severely restricted the number of suppmbrte
contexts determined by mandatory condition: prosodic functions on the other hand the corpugaias
VARIANT_ RULEZV(D; ,b,e,<00nditi0r>) large number of variations of the supported prasodi
b (baseling and e (extra) are scalar values which features. Yes/no questions were chosen becaudgeiof t
should be taken as a contribution into overallétigpst ~ characteristic intonation pattern. Working withtifistive
pattern enables to better judge how well the prizsod
function was realized.
is satisfied the mismatch based on value p[ is The recorded speech corpus was automatically
analyzed using MOMEL algorithm [8]. Obtained
quadratic FO stylizations were used as the invgrabiF0
contours. Each syllable-sized intonation unit was
described by three FO values aligned at 10, 5008#6l of
the voiced portion of the underlying syllable. Taetual
synthesized occurs in the last prosodic word of thémplementation of the algorithm was implemen.ted in
sentence then penalize all candidate syllablesdbatot Python and the manual steps of speech annotatioe we
supported by excellent tool — PraafThe rules that

occur in last prosodic word of the sentence inrthei irol th it selecti tored i XML nfiat

original contexts with penalty value = 10, othewmvis cog ro ebunl s€ eclion adr_(te ZorE ml anl | h

penalty value = 1.“. Variant rules offer great flahty in and can be manualy edited. For low-ievel speec
synthesis and evaluation of synthesized contour$ we

expressing requirements for the unit selection @gsc . .
Enhanced unit selection algorithm with integratiafn known MBROLA diphone synthesiZewas used.

the contextual features works almost the same atsin 3.5 Experiments

basic form. Slight differences are introduced i tsteps Several experiments were performed in order tothest
— construction of the candidate unit set and coatjort performance of the synthesis engine. First of B# t
of target cost. The candidate set may be narroveed a gptimal value for penalization of concatenationtosas
result of applying all mandatory rules. Theoreticdhe  gearched for heuristically. Reasonable balancedevaf
candidate set may be left completely empty. Contjmuta e penalty can always be found but it appears witht
of target cost gets complicated because the WeiW}ts the increasing number of rules the value of comzgien
penalty should also be increased.

Next experiment was performed to test the flexipiif
rules must applied and the resultant Weigwui is the unit selection algorithm. Intonation of the sam
sentence was repeatedly synthesized while the nuaibe
rules grew. In order for the rules to be more

The most versatile is the third type of rule calted
variant rule. By using variant rules we are ablextwease

in case of mismatch based on featype. If the condition

penalized by value oéxtra otherwise the mismatch is
penalized by value dfaseline As an example let us take
the functionally derived requirement b) from chagtelf
we transform it into variant rule it could have ked like
the following: “If the current target syllable bgin

need to be computed first. For each feat{e relevant

obtained by formula:

W = |_| RULEj(pj:bj,ejyconditi()r) (6) comprehensive for the reader semantic descriptibn o
i used features are given in Table 1. Concatenatoalfy
where p; = ;. value for the whole experiment was set at ¢ = EuRs

of this experiment are demonstrated in Fig. 1-6.ths

If there is any valid ignore rule the weight would beginning of the experiment only single rule was

equal to zero. Otherwise the weight will be caltediaas

) employed:
a product of penalty values from all relevant vatriaules. R1 : M(phr_has_plus5_pw)
3.4 Implementation of the Synthesis Engine The sentence being synthesized was a simple yes/no

For the purpose of proper evaluation of the progosequestion: ,Mame dobru naladu?” (English: “Do we &av
synthesis approach new experimental speech corpas wgood mood?”). After applying the initial set of esl
recorded. The corpus consists of total number & 14
sentences, 754 words, 1679 syllables and 3982 pfesie 1 yh./ww.fon.hum.uva.nlipraat/
2 http://tcts.foms.ac.be/synthesis/




intonation contour displayed in Fig 1a was produaad respectively. This time the beginning of the sec¢ewas
selection of units illustrated in Fig 4 was perfedn cut-out which brought in unnatural melody at theetrof
Audibly the result was rather acceptable but it was the target sentence. Addition of the third rule oged
very good overall. Rule R1 limited the set of pblsi also this undesireable effect:

candidates to syllables from sentences of siméagth. R3: V(syl_1st_in_pw1.0, 6.0, pw_1st_in_phrl))

From Fig. 4 it is clear that the high value of catenation Now both the beginning and the end of sentence are
penalty has caused selection of units from singigesice. composed of intonation sub-contours that are atigne
However the last prosodic word from which the dylits  typical melodic pattern for yes/no question is presd
were taken is two syllables longer and therefore thand the sentence has natural intonation onset.\ildssall
typical melodic pattern on the last prosodic word o achieved using only 3 control rules. All of theasilthat
yes/no question was cut. In order to correct tfiiscethe  were added in the course of the experiment werereter
second rule was introduced. It effectively penalize from logical functional requirements. This demoatis
selection of syllables that are not the final dyik® in  the flexibility of the framework and its ability teasily
their original sentences in the place of the lasgdt introduce variability to intonation synthesis.

syllable in the sentence.

R2: V(syl_final_in_pw 1.0, 6.0, pw_final_in_phr 1)) @@ @@ @ = @
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Figure 1. FO contour generated using 1 rule.
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Figure6. Illustration of unit selection with 3rules.

4 CONCLUSION
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4.1 Advantages and Disadvantages
Figure 3. FO contour generated using 3rules. g g

Proposed system for synthesis of intonation hasesom

Rule R2 achieved alignment of the final part off€ally nice features: _ _ _
sentence with candidate units having the same piiepe It allows flexible adjustment of weights in a
Again selection of all units was drawn entirely rfro comprehensible manner. _
single sentence in the corpus. The resultant F@oaon 2) Output intonation contours are (at least piece-

and the unit selection are depicted in Fig 2 angl i wise) always formed from real FO sub-contours.
3) Acoustic parameters are not taken into account



for unit selection which enables computationallyonly at the price of probable spurious discontiesitat
less expensive ways of calculating costs. concatenation points. In our current setting noatigeg

Although the listed pros are quite comprehensided  effects were observed but for larger corpora thislem
are also some serious drawbacks that should baill surely inflate. Therefore some mitigation peatre
mentioned. First of all, there is a problem how tomust be found — either modification of the unitestion
efficiently implement this algorithm. Each new mduced  process or modification of the output FO.
rule causes the number of computations to linegmyw The second urgent issue concerns the way how the
since the rule must be applied to each candidadl@bsy.  actual FO is concatenated. Currently the FO valaken
For standard-sized corpus containing approximatelfrom the winning candidate are stretched accorglimgl
50000 syllables each rule requires cca 50000 tets.  order to fit on the target phonetic stream. Howenvken
for improvement worth testing is to define striett ®f the mismatch between candidate and target syllahles
mandatory rules in order to consider only reasonbist  terms of syllable structure is too big some moebetate
number of candidates. To compensate for continuitfitting procedure would be suitable. Rather bigmasch
which would be affected by such massive reductibn omay have influence on the global tune — speakerdvou
candidates the candidate set should always cotit@n prefer different melodic pattern. These effectsusthde
natural neighbor of the optimal candidate for poegi analyzed in order to find the balance — when tremaich
syllable. This would have had also a positive ¢fteat in phonetic structure has such influence that dusth be
the candidate set would then almost never be efajtly  penalized.
some rare exceptions). Some gaps in our current solution which urgentlgche

Second source of troubles may be caused by the faitt be solved have been pointed out. However theze a
that growing number of rules may lead to uncorafil#  also some optimistic options for further researCtur
growth of target cost values. Finally, there weoens  synthesis algorithm proved to be flexible enoughte
really strong simplifications made  regardingeven ad hoc rule creation causes the synthesisitotap
concatenation cost. Neglecting of FO in computatitbn improve in intended way. Formulation of the rules
concatenation cost is rather strong simplificatiérmr  however need not to be purely human job. We believe
smaller corpora with limited prosodic scope (like bone that our current synthesis engine can be turned int
used in this study) negative effects may not bentelligent machine-learning system after some hiert
encountered often. improvements. Human teacher would guide the aufomat

However for larger corpora with broad prosodiclearning system by judging its output. This presenteal
coverage there is higher probability of spuriousps in  challenge for us now.
FO at concatenation points.
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