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Abstract In this article the relevant training aspects for
building robust and accurate HMM models for large vocabu-
lary recognition system are discussed and adjusted, namely:
speech features, training steps, and the tying options for con-
text dependent (CD) phonemes. As the basis for building
HMM models the well known MASPER training scheme is
assumed. First the incorporation of the voicing information
and its effect on the classical extraction methods like MFCC
and PLP will be shown together with the derivative features,
where the relative error reductions are up to 50%. Next the
suggested enhancement of the standard training procedure
by introducing garbled speech models will be presented and
tested on real data. As it will be shown it brings more than a
5% drop in the error rate. Finally, the options for tying states
of CD phonemes using decision trees and phoneme classifi-
cation will be adjusted, tested, and explained.

Keywords Speech recognition · Hidden Markov models ·
Speech features · Model training · MASPER

1 Introduction

For a couple of decades there has been a great effort spent
in building and employing automatic speech recognition
(ASR) systems in areas like information retrieval systems,
dialog systems, etc., but only as the technology has evolved
to some stage other applications like dictation systems or
even automatic transcription of natural speech [1] are emerg-
ing. These advanced systems should be able to operate on
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a real time base, must be speaker independent, achieving
high accuracy even in the presence of additive and convolu-
tion noises, changing environments, and support dictionaries
containing several hundreds of thousands of words.

These strict requirements can be currently met by HMM
models of tied CD phonemes with multiple Gaussian mix-
tures, which is a technique known from the 60ties [2]. As
this statistical concept is mathematically tractable it, un-
fortunately, doesn’t completely reflect the physical under-
lying process. Therefore, soon after its creation there have
been many attempts to alleviate that. Nowadays the classi-
cal concept of HMM has evolved into areas like hybrid solu-
tions with neural networks, utilization of different than max-
imum likelihood (ML) or maximum a posteriori probability
(MAP) training strategies that minimize recognition errors
by the means of corrective training, maximizing mutual in-
formation [3] or by constructing large margin HMMs [4].
Furthermore, a few methods have been designed and tested
aiming to suppress the first order Markovian restriction by
e.g. explicitly modelling the time duration (Levinson, 1986),
splitting states into more complex structures [5], using dou-
ble [6] or multilayer structures of HMM. Last but by no
means least issue is the construction of robust and accu-
rate feature extraction method. Again this matter is not fully
solved and various popular features and techniques exist
like: Mel frequency cepstral coefficients (MFCC), percep-
tual linear prediction (PLP) features, concept of RASTA fil-
tering [7], time frequency filtering (TIFFING) [8], Gamma-
tone cepstral coefficients (GTCC) [9], zero-crossing peak
amplitude (ZCPA) [10], etc.

Even despite the huge variety of advanced solutions in
ASR systems many of them are either not general enough
(specially designed to certain environment) or are rather im-
practical for the real-life employment. Thus, in the present
time most of the practically employed systems are based on
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continuous context independent (CI) or tied CD HMM mod-
els of phonemes with multiple Gaussian mixtures trained by
ML or MAP criteria. As there is no analytical solution for
the optimal setting of HMM parameters given the real data,
there must be a training process employed which is an it-
erative one [3]. Unfortunately, using it, there is no guaran-
tee of reaching the global maxima [11], thus lot of effort
is paid to the training phase in which many procedures are
selectively applied in stages. Thus only mature and com-
plex systems allow convenient, efficient and flexible train-
ing of HMM models, where the most famous are HTK and
SPHINX. These systems are looked at as standard tools for
building robust and accurate models for large vocabulary,
practical systems.

This article discuses and explains major stages of build-
ing speaker independent continuous density HMM
(CDHMM) models using the professional database
MOBILDAT-SK [12] and the standard training scheme
called MASPER [13]. The rest of the article is organized
as follows. First the standard training method will be used
with several base speech feature extraction methods, namely
MFCC and PLP and a couple of auxiliary parameters,
mostly dynamic ones. Further the measure of voicing which
plays a role in differentiating some pairs of consonants will
be added as well as the pitch itself. Each setting and fea-
ture will be tested and its merit numerically assessed and
compared to the original one. In the second section the fo-
cus will be on the training process itself, where as the basis
the reference recognition system REFREC [14] or its mul-
tilingual version MASPER will be used and introduced in
brief. However the core part would be on presenting the
enhancement to the standard training procedure by incor-
porating the background models of garbled speech. Several
structures of those models will be designed and tested as
well as the ways how they are to be optimally trained. The
third part deals with the process of tying HMM states of CD
phonemes using both the language information (classifica-
tion of phonemes) and the statistical similarities of the data.
Setting optimal tying options, understanding the underlying
physical process and its effect on the right balance between
the accuracy and generality may bring additional increase
of the overall accuracy. Next, in brief, the training and test-
ing environments (executed tests) will be presented along
with the professional database. The article is concluded by
summarizing results and findings. Therefore the presented
article should give you an insight into how to adjust and
build both robust and accurate HMM models using standard
methods and systems on the professional database. Further,
it should suggest what may be and what probably is not so
relevant in building HMM models for practical applications,
i.e. which part the designer should be particularly careful
with.

2 Feature extraction methods and their performance

One of the first steps in the design of an ASR system is to
decide which feature extraction technique to use. At the be-
ginning it should be noted that this task is not yet completely
solved and a lot of effort is still going on in this area. The
aim is to simulate the auditory system of humans, mathemat-
ically describe it, simplify for practical handling and option-
ally adapt it for a correct and simple use with the selected
types of classification methods.

A good feature should be sensitive to differences in
sounds that are perceived as different in humans and should
be “deaf” to those which are unheeded by our auditory sys-
tem. It was found [15] that the following differences are au-
dible: different location of formants in the spectra, different
widths of formants and that the intensity of signals is per-
ceived non-linearly. On the other hand, following aspects do
not play a role in perceiving differences: overall tilt of the
spectra like, filtering out frequencies lying under the first
formant frequency, removing frequencies above the 3rd for-
mat frequency, and a narrow band stop filtering.

Furthermore, features should be insensitive to additive
and convolutional noises or at least they should represent
them in such a way that these distortions are easy to lo-
cate and suppress in the feature space. Finally, when using
CDHMM models it is required for the feasibility purposes
that the elements of feature vectors should be linearly inde-
pendent so that a single diagonal covariance matrix can be
used. Unfortunately, there is no feature that would ideally
incorporate all the requirements mentioned above.

Many basic speech features have been designed so far,
but currently MFCC and PLP [16] are the most widely used
in CDHMM ASR systems. In most cases these basic fea-
tures aim to mimic the static part of the spectra as it is
perceived by humans. Apart from the static features it was
soon discovered that the changes in the time [17] represented
by delta and acceleration parameters play an important role
in modelling the evolution of speech. This notion was fur-
ther evolved by introducing the concept of modulation fre-
quency and RASTA filtering [7]. This is particularly impor-
tant when using HMMs as they lack the natural time du-
ration modelling capability (geometric time distribution in
a single state). Overall energy or zero cepstral coefficients
with their derivations also carry valuable discriminative in-
formation thus most of the systems use them.

More details on both MFCC and PLP methods can be
found elsewhere [9, 16, 18], but in the following let us men-
tion some basic facts and achieved results both for basic fea-
tures alone and with auxiliary coefficients.

2.1 MFCC vs. PLP

MFCC and PLP both represent some kind of cepstra and
thus are better in dealing with convolutional noises. How-
ever, it was reported that some times in lower SNRs they
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Table 1 WERs and relative
improvements for MFCC, PLP
and auxiliary features averaged
over different HMMs for digit
strings and application words
tests

Static Relative Improvements related to previous step

WER [%] C0 [%] Delta [%] Acceleration [%] Cepstral mean

subtraction [%]

PLP 40.3 11.1 61.47 52.1 23.27

MFCC 43.6 20.64 61.36 48.15 52.66

are outperformed by other methods, e.g. TIFFING [8],
J-RASTA [19], ZCPA [10], etc. as they nonlinearly couple
signals with additive noises. This well known fact of a rapid
deterioration in accuracy for lower SNRs that is not solely
related only to PLP or MFCC is compensated by matching
training and employment environments, thus huge profes-
sional databases are recorded in real environments. On the
other hand, in the clear environment (above 30 dB) MFCC
and PLP provide one of the best results [10].

The computation of MFCC undergoes following process-
ing.The speech signal is first modified by HP so-called pre-
emphasis filter to suppress the low pass filtering character
of the speech given by the lip radiation to the open space.
Prior to the FFT computation a Hamming window is ap-
plied and the frequency in Hz is warped into the Mel scale
to mimic the critical bands over different frequencies. Next,
equally spaced triangular windows with 50% overlap are ap-
plied to simulate a filter bank. Finally the logarithm function
and DCT transform are applied that produce a static feature
frame. The logarithm not only acts as a tool to produce cep-
strum (real one) but suppress the high-value intensity in fa-
vor of low intensities as the human auditory system does. In
addition, zero cepstral coefficient is used as well to estimate
the overall log energy.

Unlike MFCC the original process of PLP calculation
follows these steps: calculation of FFT that is proceeded by
Hamming windowing, frequency warping into Bark scale,
smoothing the bark-scaled frequency spectra by a window
simulating critical bands effect of the auditory system, sam-
pling the smoothed bark spectrum in approx. 1 bark intervals
to simulate the filter bank, equal loudness weighting of the
sampled frequencies which approximates the hearing sen-
sitivity, transformation of energies into loudness by power-
ing each frequency magnitude to 0.33, calculating the linear
prediction (LP) coefficients from the warped and modified
spectra (all pole model of the speech production), finally
cepstral LP coefficients are derived from LPC as if the loga-
rithm and the inverse FFT were calculated.

In both MFCC and PLP cases, the DCT or FFT transform
applied in the last step of the computation process minimize
the correlation between elements and thus justifies the us-
age of diagonal covariance matrices. Furthermore, to take
the full advantage of cepstral coefficients, usually a cep-
stral mean subtraction is applied in order to suppress possi-
ble distortions inflicted by various transmission channels or

recording devices. At the end we shall not forget about the
liftering of a cepstra in order to emphasise its middle part so
that the most relevant shapes of spectra for recognition pur-
poses would be amplified (lower-index coefficients approx-
imate the overall spectral tilt and the higher-index coeffi-
cients reflect the details and are prone to contain noise) [15].
Well, this appealing option has no real meaning when us-
ing CDHMM and Gaussian mixtures with diagonal covari-
ance matrices only. In this case it is simply to show that the
liftering operation would be completely canceled out when
computing Gaussian pdf.

All the above-mentioned features and auxiliary settings
were tested and evaluated on he MOBILDAT-SK database
in terms of the recognition error. Two tests were done on
the test set portion of the database: digit strings, and ap-
plication words whose results were averaged. The training
was based on the MASPER training procedure (will be pre-
sented later in the text) using the HTK system. In Table 1
there are shown averaged word error rates (WER) for PLP
and MFCC features as scored in the application words and
digit string tests. The relative improvements achieved by:
adding zero cepstral coefficient, including delta and accel-
eration coefficients, and applying cepstral mean subtraction,
are also shown. These results were calculated and averaged
over different HMM models i.e. CI and tied CD phoneme
models with multiple Gaussian mixtures.

From these tests one can induce that slightly better results
are obtained by PLP method in both cases, once regarding
only the static features (43.6% vs. 40.3% of WER in fa-
vor for PLP) and the other time using all abovementioned
static and dynamic auxiliary parameters and modifications
(5.24% vs. 5.08% of WER in favor for PLP). Further, we
investigated step by step the significance of auxiliary fea-
tures and modification techniques. First let us begin with
the zero cepstral coefficient (C0), where its incorporation
brought relative improvements over basic PLP (11.1%) and
MFCC (20.64%) vectors. As it can be seen the improvement
is much more relevant for MFCC, thus we can interpret this
result as the PLP provides more complex representation of
the static speech frame than MFCC (from the point of view
of recognition accuracy), because the additional information
was not so beneficial. Next the inclusion of delta coefficients
disclosed that their incorporation brought down the averaged
error relatively by 61.36% for MFCC and 61.47% for PLP
(related to basic vectors plus C0). If this absolute drop is
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further transformed to the relative drop calculated over a
single difference coefficient (if all are equally important), it
shows that one delta coefficient on average causes a 4.72%
WER drop for MFCC and 4.73% for PLP. Next, the acceler-
ation coefficients were tested, and their inclusion resulted in
a 48.15% drop of WER for MFCC and 52.1% drop for PLP
relative to the previous setting (basic vector + C0 + delta).
Again, the incorporation of dynamic (acceleration) coeffi-
cients was more beneficial for PLP. If these absolute drops
in WER are calculated for a single acceleration coefficient,
it was found that one such coefficient causes on average a
3.7% drop of WER for MFCC and a 4% for PLP. Finally,
the cepstral mean subtraction was tested for both methods
where it brought substantially improved results on average
by 52.66% for MFCC and 23.27% for PLP. As it can be
seen the benefit of this operation is tremendous for MFCC
comparing to PLP. That reveals the PLP is less sensitive to
the cepstral mean subtraction, probably, because it uses non
linear operations (0.33 root of the power, calculation of the
all pole spectra) applied prior to the signal is transformed
by the logarithm and before the cepstral features are calcu-
lated. Interestingly enough, both dynamic features caused to
be more significant for PLP than for MFCC in relative num-
bers, however, for the additional C0 (static feature) this was
just the opposite. All this may suggest that PLP itself is bet-
ter in extracting static features for speech recognition as the
information contained in C0 and cepstral mean subtraction
are not so vital, unlike MFCC.

2.2 Voicing and the pitch as the speech features

As it was shown in the previous paragraph apart of the base
static features that aim to estimate the magnitude-modified
and frequency-warped spectra, the dynamic features reflect-
ing time evolution, like delta and acceleration coefficients
proved to be rather valuable as well. As a consequence of
their construction and aim, those parameters eliminate any
voicing evidence contained in the signal which still carries
some discriminative information that may play a role in the
recognition accuracy. Namely, this information is vital to
discriminate between some pairs of voiced and unvoiced
consonants (t–d, etc.). To alleviate this drawback we sub-
stituted the least significant static features with such kind of
information derived from the average magnitude difference
function (AMDF). To evolve this concept further the pitch
was tested in the separate experiments as well. In order to
verify and assess the merit of such a modification, series of
experiments were executed using the professional database
and a training scheme for building robust HMM models.

As it was already outlined the concept of incorporat-
ing some parameters assessing the voicing of a particular
signal may bring additional discriminative information into
the recognition process. For example in Slovak, one clas-
sification of consonant is according whether they exist in

voiced/unvoiced pairs. In the group where pairs exist each
consonant is matched into pair according to the mechanism
how they are produced and perceived. In the group of pairs
there is always an unvoiced consonant that is matched to the
voiced one. The only difference in their production is the ab-
sence of vocal chord activity that obviously can not be ob-
served after PLP or MFCC processing. Some typical pairs of
voiced and unvoiced consonants are: z in the word zero and
s as appears in the word sympathy, p (peace) and b (bees),
d (divide) and t (tick), etc. As it can be seen, distinguishing
between them may be crucial, thus such information can be
potentially beneficial. On the other hand, it must be said that
there are many cases (at least in Slovak) where in the real
conversation the voiced and paired consonant may take the
form of unvoiced one and vice versa. Thus these two con-
tradictory effects must be tested and assessed, to see which
one is prevailing.

As it comes to the selection of proper method estimating
the voicing degree in a signal, there are more methods to
do it as well as to detect the periodicity as a side product.
These algorithms are ranging from the simple algorithms in
the time domain like: AMDF, and autocorrelation, through
spectral ones like harmonic spectra and real cepstrum to
methods operating on the residual signal after the inverse
filtering. A good method should be accurate, robust against
additive noise, easy to compute and the outcome should be
easy to interpret and should be gain invariant. In our exper-
iments we opted for AMDF method as it provides good re-
sults obtained even in lower SNRs, has a simple and fast im-
plementation, its output has straightforward representation,
the by product is the detected pitch and moreover it is the
base for more complex methods like YIN [20]. The AMDF
function is defined as follows:

fi(k) =
n<N∑

n=0

|s(i · N + n) − s(i · N + n + k)|,

k ∈ 〈Tmin, Tmax〉, (1)

where s is a signal, N is length of the tested block i and
Tmin and Tmax are the minimal and maximal pitch periods.
Then as a measure of voicing the minimal value of AMDF
found within the eligible ranges for pitch can be used. Fur-
ther, to suppress its dependence upon magnifying constant,
usually a ratio to its maximal or averaged value is computed
as follows:

voicingi =
1

Tmax−Tmin

∑k<Tmax
k=Tmin

fi(k)

minTmin≤k<Tmax(fi(k)).
(2)

Using this definition the voicing measure is in the range
〈1, ∞). Therefore, its interpretation is as follows: for math-
ematically periodic signals it produces infinite value—
voicing, whereas random signals with no period would ex-
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Fig. 1 Relative improvements
for MFCC, various HMM
models (CI and CD with 1 to 32
mixtures each) and application
words test achieved by
incorporating voicing and pitch
measures

hibit values close to 1. Furthermore, the location of the min-
ima can represent the estimated pitch; however certain pre-
caution and logic should be introduced in order not to detect
longer periods—usually integer multipliers of the real one.

To assess its effectiveness two basic tests were executed
upon all models and the examined feature extraction meth-
ods, i.e. MFCC and PLP both in combination with the
voicing and pitch estimates. All experiments were accom-
plished on the test part of the MOBILDAT-SK database that
amounts to 220 speakers. The two basic tests were: digits
strings that can contain arbitrary number of digits in any
string and the application words test that equals to the recog-
nition of isolated words. Although the digits string test ex-
hibits higher perplexity and therefore provides higher er-
rors it uses only very limited set of CD phonemes. On the
other hand, the application words test contains greater vari-
ety of words, CI and CD phonemes and therefore provides
more objective insight about how good all the models were
trained.

To assess the merits of incorporating the voicing measure
and the pitch into the recognition process, achieved results
are related to the original ones (MFCC and PLP) via the
relative improvement unit defined as follows:

relative_improvement = WERorig − WERmod

WERorig
100. (3)

Further it should be noted that the new features were not
simply added to the original vector but instead they replaced
its least significant elements (we believed according to the
theory they were the last PLP and MFCC coefficients). This
allowed us to maintain the same vector size during all the
experiments and thus made the comparison more objective.

As the PLP and MFCC features performed in a slightly
different way the results will be given separately for both
features. Finally, to save up the space only results for the ap-
plication words test are shown in the following pictures, as

similar behavior was observed in the case of digits strings,
however due to the higher perplexity higher errors were
achieved.

In Fig. 1 there are depicted the relative improvements for
MFCC achieved by introducing the voicing measure and the
pitch feature in the case of application words test. The same
results for PLP are shown in Fig. 2. In all the cases it is
clear that better results were observed by the inclusion of
suggested features, however the replacement of the least sig-
nificant basic features is more relevant for MFCC where on
average an 24.51% improvement was recorded whereas for
PLP it was only 19.96% (average for application words and
digit strings tests). Further, it is noticeable that the pitch was
more successful (black bars) in connection with MFCC fea-
tures and that its incorporation tended to be more beneficial
in the case of more complex models (with higher number of
mixtures) for both PLP and MFCC parameters.

To conclude the discussion on the speech feature extrac-
tions and the voicing measure, let us recap and explain the
observed results in the following points.

Incorporating the voicing coefficient defined in (2) and
(3) that assessing the level of similarity between possible pe-
riods of voiced signals turned out to be very effective; on av-
erage a 24.51% improvement was observed for MFCC and
19.96% for PLP. This feature may provide necessary dis-
criminative information between paired consonants (voiced
and unvoiced, like: s and z, p and b, t and d, etc.).

The inclusion of pitch itself by replacing the least sig-
nificant PLP or MFCC elements was despite its dispersion
and non-lexical-nature beneficial in both cases, where for
MFCC the averaged improvement reached 21.68% and for
PLP it was only 17.6%. Those relative “improvements” are
in fact degradation in the accuracy compared to the voic-
ing measure and not to the original basic features; then the
WER increased by almost 3% for MFCC and more than 2%
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Fig. 2 Relative improvements
for PLP, various HMM models
(CI and CD with 1 to 32
mixtures each) and application
words test achieved by
incorporating voicing and pitch
measures

for PLP. On the other hand the pitch information is more
beneficial for more complex models even in the PLP case;
however benefits were relatively minor. This phenomenon
can be explained by better description capabilities of more
complex HMM models that are more equipped to cope with
the wider ranges of possible pitch values.

The results with voicing and pitch parameters are in line
with those mentioned in Table 1, where it was shown that
PLP static features were more effective in representing the
speech for recognition purposes. Thus the replacement of
the least significant features by voicing and pitch parameters
was more relevant for MFCC extraction method in all the
cases; more details can be found in [21].

3 Training process for HMM models

There have been several projects aimed at setting a gen-
eral and reference framework for constructing robust and
accurate ASR system for real life applications [22] using
databases recorded over fixed or mobile telephone networks.
Currently the common methods or concepts are the RE-
FREC (versions 0.95 and 0.96) [14, 23] and its multilin-
gual counterpart MASPER [13]. They are tailored to operate
on the SPEECHDAT [24] or MOBILDAT [12] databases,
as these act as standards for recorded data files, annotation
conventions, labels files, etc., and there are many of them
(more than couple of dozens) in different languages. Fur-
thermore, both training methods are based on the advanced,
wide spread and well documented HTK toolkit [25] and
were designed as a part of COST 249 initiative.

The main concept of REFREC 0.95 recognition system is
based on that one presented in HTK tool [25], however en-
hanced to serve for multilingual purposes. During the course

of the run it produces following models: flat start (no time
alignment) monophones with 1 up to 32 Gaussian mixtures,
time aligned monophones (1 to 32 mixtures), triphones (with
only one Gaussian) and tied models of triphones with 1 to 32
Gaussian mixtures. As a part of the training there are 3 uni-
fied small vocabulary tests provided for all models involving
application words, single digits and looped digits.

In the following a brief introduction to the training pro-
cess of REFREC and MASPER is given. The speech record-
ings are parameterized to the MFCC vectors with 13 static
coefficients including C0. Auxiliary dynamical features like
delta and double delta coefficients are appended during the
course of training to make up the total vector length of
39. The data preparation process goes on by: gathering and
transforming the descriptions files into master lab file [25],
modifying dictionary entries, selecting the training, testing
and development testing sessions, producing phone lists,
phoneme mapping, etc. Further, individual utterances that
are in a way damaged by the presence of intermittent noise
(int), unintelligible speech (∗∗), mispronunciation (∗), trun-
cation (∼) and filled pauses (fil) are removed, while other
markers are ignored. Then the training starts by flat start ad-
justment of all Gaussians to the averaged mean and vari-
ance of observed vectors. This initialization phase and first
cycles of embedded trainings are executed over the pho-
netically rich utterances with creation of silence (SIL) and
short pause (SP) models. Then a Viterbi realignment is done
throughout the whole database and further training cycles
with gradually increasing number of Gaussian mixtures up
to 32 are performed. These final models are used to do the
time alignment of all utterances so that a single model train-
ing of monophone models can be done in the second stage
of the training (modification to 0.94 version). These aligned
models are built and enhanced in the similar fashion as pre-
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viously, but from the time aligned data. Monophones derived
in this stage with 1 Gaussian mixture are used for cloning
context dependent phonemes (triphones). As only word in-
ternal triphones are regarded, the remaining parts are mod-
eled by biphones. Triphones are first trained in 2 cycles of
embedded training and then tied to increase their robustness
and to cut down on their size. This is done via the clustering
decision tree algorithm which is based on the training data,
but still follows particular rules of the language set by ex-
perts. This is done by generating questions about the left and
right context utilizing provided classes of phonemes aiming
at increasing the probability of the modeled data. Further-
more, this approach enables to create structures for synthe-
sizing unseen triphones in the training set.

In the 0.96 versions some non-speech acoustic events
were modeled rather than the whole affected utterances
would have been excluded, which usually ended up in rel-
atively large drop in the training data. Thus utterances de-
graded by intermittent noise (Int) and filled pauses (Fil) are
preserved in the training set and models of speaker produced
noise (Spk) and hesitation model (Fil) are introduced and
trained. However Int markers are left unheeded in the train-
ing and all these amendments brought overall improvements
as documented in [14].

To enable an effective design of multilingual and cross-
lingual ASR systems (main goal) some further modification
must have been done to the REFREC 0.96, which resulted
in MASPER procedure [13]. These changes are as follows:
cepstral mean normalization (channel equalization), modifi-
cations to the parameters of tree based clustering, production
of training statistics, and distributed computation.

As can be seen the modified REFREC 0.96 or MASPER
is an advanced procedure for building mono, multi or cross-
lingual HMM models. However, we discovered some defi-
ciency in handling with the training data, i.e. the removal of
all utterances contaminated with truncated, mispronounced
and unintelligible speech. Thus in the following the mod-
ification to the MASPER procedure aiming to model the
damaged parts while preserving useful information for the
training purposes will be discussed.

3.1 Tested models for Garbled speech and the statistic of
training data

One of the possible ways to improve the performance of any
ASR system based on HMM models is to make these models
in the training phase more robust while preserving their ac-
curacy. These two requirements contradict to each other and
fulfilling both ends up in the increasing number of the train-
ing data which is difficult and expensive to gather. REFREC
0.96 fixed this comparing to its 0.95 version by allowing
some damaged utterances to be used in the training process

and by doing so it improved the overall results [14]. How-
ever, there are still some recordings excluded because of se-
rious damages. We proposed methods to solve this problem
and save these recordings for the training process. First let
us recap some facts.

For the training purposes there are 44000 speech files
available in MOBILDAT-SK database. However, training
speech files that contain mispronounced, truncated and unin-
telligible speech or speech contaminated with frame loss or
fading in the mobile network (marked by %), are rejected
from the MASPER training process. It is so because for
these files it is not possible to create correct phoneme-level
transcriptions, as they can be clipped from the sentence, and
further, the transcription of any sentence does not contain
any kind of time markers. MOBILDAT-SK was found to
contain 3096 of such speech files. These are doomed to be
rejected although they can still contain noticeable count of
phonemes that could be used in the training process, and
more than 26% of all rejected speech files are items contain-
ing phonetically rich sentences.

Using the phone level transcriptions created by MASPER
procedure, the phoneme analysis of MOBILDAT-SK has
been performed. After the rejections of corrupted speech
files there were in total 955611 instances of all phonemes,
of course, except sil, sp, fil and spk models. The same anal-
ysis applied just to the rejected speech files has brought fur-
ther 89018 realizations of usable phonemes, which amounts
to the 9.32% average increase of usable phoneme instances.
More detailed statistic regarding the recordings, phonemes
and triphones found by MASPER and modified MASPER
procedures on MOBILDAT-SK is summarized in Table 2.

Furthermore, the number of phoneme instances for each
phoneme is displayed in Fig. 3. The modified MASPER
procedure preserves useful data from damaged speech for
the training purposes. It does so by using unified model of
the garbled speech so the damaged recordings can be mod-
eled and thus do not need to be rejected. The corrupted
words in these utterances are not expanded to the sequence
of phonemes, but instead they are mapped to a new unified
model of garbled speech while the rest of sentence can be
processed in the same way as in the classical procedure. The
new model is added to the phoneme list (context indepen-
dent and serves as word break) and trained together with
other models. However its structure must be more complex
as it should map words of variable lengths spoken by various
speakers in different environments.

The reasons mentioned above for the great complexity of
the new model imply that the structure contains all possi-
ble forward and backward transitions except transition be-
tween non-emitting states themselves. That means the uni-
fied model is ergodic, as it theoretically allows finding the
best assignment of each observation to any state regardless
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Table 2 Statistics of utilized
phonemes, triphones and
recordings in MOBILDAT SK
by MASPER and modified
MASPER

Statistics of the database MASPER Modified MASPER Absolute increase Relative increase

recordings 40861 43957 3096 7.58%

phonemes 51 51 0 0%

triphones 10567 10630 63 0.60%

instances of phonemes 955611 1044629 89018 9.32%

average number of ∼90.4 ∼98.27 ∼7.84 ∼8.7%

instances per a triphone

Fig. 3 Number of instances for each phoneme in MOBILDAT-SK processed by MASPER and modified MASPER

of state’s sequential number. On the other hand, this struc-
ture increases the number of possible paths (estimated pa-
rameters) through the model, and thus can be difficult to
train. Thus several experiments have been performed in or-
der to compare the results achieved by using different struc-
tures of the garbled speech model and its enhancements
during the training process to find the best combination of
the model structure and its training for the given speech
database. Individual structures differed in the number of
emitting states while the final ergodic transition matrix was
used.

The simplest structure contains only one emitting state
which describes general characteristics of the garbled speech
signal itself. Nevertheless the number of Gaussian mixtures
grows up to 32 during the MASPER training, which then
leads to the finer probability space subdivision. This struc-
ture has the least adjustable parameters, and so can be ro-
bustly estimated. On the contrary the most complex struc-
ture of the garbled speech we tested consisted of 5 emitting
states. In this case all possible transitions between emit-
ting states and transitions between non-emitting and emit-
ting states were allowed and reestimated during the training
process. This model facilitates the finest probability space
subdivision, but with 32 Gaussian mixes the number of ad-
justable parameters grows up significantly. Therefore the

Fig. 4 The structure of 3 state model (BH) of garbled speech

third structure consisting of 3 emitting states was tested
and is depicted in Fig. 4. This number of states is typically
used for all other models in the training including models of
noises and background. The usage of ergodic transition ma-
trix allows mapping of statistically different parts of speech
to the different states. Further details on tested and trained
BH model structures can be found in [26].

3.2 Modified training procedure

The original training procedure is modified in the stage of
preprocessing as well as in both training phases (CI and CD
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Table 3 Tested structures and
enhancement methods of BH
models

Initial structure Method of enhancement Final structure

Left-right, start and end in the first and last
emitting states

Addition of all backward connection, no T
model

Ergodic

Ergodic No Ergodic

Left right, all forward connections Addition of backward connections Ergodic

Left right, all forward connections Addition of backward connections, single
model training of BH in second stage

Ergodic

Left right, all forward connections No Ergodic

models). In the preprocessing stage the feature extraction
is made upon the training speech files and the generation
of transcription files includes damaged speech as well. The
name of the newly introduced garbled speech model BH
(black hole—any speech can be attracted to it) is added to
the dictionary and the previously generated transcriptions
are converted into label files where all corrupted words are
replaced with the new model.

For each tested structure of the BH model several en-
hancements during the training process were carried out.
First kind of improvement is common to all trained mod-
els and it is the gradual upgrade of Gaussian mixtures. This
is performed during the training process for all other mod-
els at the same time. The second enhancement deals with
the modification to the transition probability matrix. In these
cases the transition matrix entering the initialization process
is less complex (strictly left-right) than the transition matrix
used in further training, in other words, some transitions are
prohibited at the stage of initialization as the precision is of
less importance than the robustness. This enhancement is of
course applicable only to BH models with more than 1 emit-
ting state.

Enhancements to the transition matrix are performed in
both stages of the training. In the first stage this happens
after the “flat-start” initialization and the following two em-
bedded reestimation cycles that are performed on the boot-
strap part of the database. After that the prohibited transi-
tions are allowed and are set to roughly similar values. From
this point onwards the monophone models are trained and
upgraded together with BH model as defined in MASPER.
The same procedure takes place in the second stage (time
marks exist and single model training is used) of the training
just after the Viterbi initialization of phonemes. For ergodic
BH models, the initialization with Viterbi algorithm is omit-
ted and the BH model from the previous stage is taken. This
problem does not exist in the initialization phase (cloning)
of triphones, so the ergodic BH models can be trained and
enhanced together with other triphones.

Three different transition matrices were tested in the ini-
tialization of the garbled speech models with higher num-
ber of states. The first one was an ergodic model just to
disclose the advantages or disadvantages of the gradual en-

hancements of models. Thus in this case no further improve-
ments were applied to the structure, but in order to avoid
problems with uniform segmentation using Viterbi initial-
ization [25], the model entering the second stage is copied
from the last set of monophone models with one Gaussian
mixture obtained in the first stage. In other tested cases the
Viterbi initialization of the BH models in the second stage
was used, while their structure was left-right. The second
tested transition matrix contains all forward transitions ex-
cept the transition between non-emitting states initialized to
uniform values. All backward transitions were suppressed.
The third one was a diagonal matrix allowing only transition
to the next state or persisting in the current state. In Table 3
a summary of tested initial and final structures of BH mod-
els together with their methods of gradual enhancements are
provided.

All the suggested BH models and their methods of grad-
ual enhancement were tested using classical MASPER test
procedures: application words, digits, and digit strings.
However the most discriminative and thus more relevant re-
sults from the perplexity point of view were digit strings. In
Fig. 5 there are depicted WER values achieved by the best
BH models in digit strings test for both monophone and tied
triphone models. The garbled speech model used in this case
consists of 5 emitting states with its initial transition matrix
containing all forward transitions. Other models and meth-
ods showed slightly worse results. This figure also compares
the achieved results with corresponding results produced by
the standard MASPER procedure. As it can be seen over-
all improvements were achieved which is more significant
for more complex models of CD phonemes, for which the
trade-of between robustness and accuracy is more critical.
For these models with different complexity at least a 5%
relative improvement in WER was observed. However, the
negative effect of the modified MASPER procedure is that
it naturally lasts longer; slightly less than an 11% time in-
crease was observed.

Besides the time-consumption drawback (BH is trained
in all stages), it was observed that there is almost no effect
for CI phonemes as originally there is enough data for train-
ing 51 phonemes in uncorrupted recordings. On the contrary,
the damaged recordings were also involved in the training
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Fig. 5 An accuracy comparison
of the modified MASPER
procedure to the original one
based on SVWL test for mono
and tied HMM models

together with not well trained BH model (was not very ef-
fective as a patch covering the garbled speech) which ac-
tually resulted on average in a slightly worse results for CI
phonemes. Thus a new method for the training of BH model
was suggested and tested. The idea is, instead of testing new
structures of BH models which provided only minor differ-
ences a new strategy was adopted. A 3 state BH model is
not included in the training of CI models in both stages as
it has no effect besides the increased training time. Instead,
it is trained separately using the corrupted recordings only
and the CI models that were already and properly trained
on “healthy” recordings. The BH training undergoes grad-
ual enhancements and extra iteration cycles can be added as
the overtraining phenomenon is not a problem for BH model
because it will be applied only to the training phase and seen
(damaged) recordings, so the robustness can give a way to
the accuracy. This amendment saves time with no effect on
CI models and a more accurate BH model can be obtained.
Then such complex model (ergodic with 32 Gaussian mix-
tures) is used as a patch when CD or tied CD phoneme mod-
els are gradually trained and enhanced including also the
damaged recordings. This altered strategy besides reducing
the training time brought on average a 2.65% relative im-
provement for all models, 3.2% for CI models and a 0.77%
improvement for CD models referring to the previously sug-
gested BH model strategy. The positive effect on CI models
is caused because the low complexity models in the early
stages were trained on corrupted speech together with BH
models that were not complex enough to fit the garbled pro-
nunciations. In fact, for those low complexity CI models the
original introduction of the BH models caused on average
the accuracy degradation.

4 Tying options for tied CD phonemes

Another training related issue that is partially language and
database specific is the tying process of CD phonemes. This
process merges linguistically and/or in feature space similar

states. The goal is to increase the robustness of specialized
CD models. The decision tree-based clustering uses lan-
guage questions derived from the predefined classification
of phonemes which is language specific. These questions
are asked about the left and right context of a CD phoneme
and based on each question the original cluster is divided
according to the answer. Resulting two clusters are assumed
to be better in modeling the data and thus this separation
causes the increase of the log likelihood of the data. Only
those clusters are left which recorded the highest increase
and the process is stopped if the increase is less than the
predefined minimal log likelihood. To prevent forming clus-
ters with insufficient data the minimal state occupancy is set
(occupancy count). The greatest advantage of this method
is the existence of decision trees that can be later used to
synthesized unseen CD phonemes [14]. Altogether 40 dif-
ferent classes of Slovak phonemes were used based on the
linguistic knowledge. The task was then to find the “opti-
mal” values for the minimal increase of the log likelihood
when splitting a cluster and the minimal occupancy count.
The bigger the likelihood and the occupancy count the fewer
clusters will be formed which leads to less accurate but more
robust models. Thus a right trade off must be found. Origi-
nal settings in the MASPER procedure are the same as in the
HTK book example and these were set to 350 and 100 for
the log likelihood and the occupancy count, respectively. In
the following, two occupancy counts were tested, the orig-
inal 100 which seems to be the minimal reasonable option
for complex models with 32 mixtures, and a 160 count. For
both of them the log likelihoods were tested ranging from
50% more to 70% less compared to the preset value. Tests
were done separately for isolated application words that ex-
hibit wider spectrum of used CD phonemes and the digit
strings test which has higher perplexity but uses only few
phonemes. Results are shown in Fig. 6 for the digit strings
test averaged over all tied CD models using 5 different val-
ues of the minimal log likelihood for each occupancy count.
The same results are shown in Fig. 7 for application words.
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Fig. 6 Effect of the minimal increase of the log likelihood on WER
for 100 and 160 occupancy counts in the case of digit strings

Fig. 7 Effect of the minimal increase of the log likelihood on WER
for 100 and 160 occupancy counts in the case of application words

As it can be seen different courses of WER were ob-
tained. For digit strings (Fig. 6) it is just the case of a right
trade off, neither too robust nor too accurate. Thus the mini-
mal increase of the log likelihood should be kept somewhere
in the middle. Further, for both boundary cases such occu-
pancy count is preferable which eliminates the influence of
the “extreme” log likelihood, i.e. for 525 the lower value
(100) of the occupancy count is better and for log likeli-
hood equal to 100 the 160 occupancy count shows better
results. All these finding are according to the expectations
(robust vs. accuracy balance). However, in the application
words test (Fig. 7) that contains wider range of CD mod-
els and fewer training samples, both extreme cases show
slightly better outcomes, i.e. to have either very accurate
models or very robust ones (at least in the tested ranges),
that is obviously against any assumptions. To get a relevant
explanation, particular results from application words test
must be look at separately (Fig. 8) instead of having them
aggregated.

Figure 8 shows grouped results for different values of the
minimal log likelihood as a function of the number of mix-
tures per model. An obvious trend can be observed that in
the case of low complexity models (low number of mixtures)
higher values of the likelihood are favorable (fewer divisions
occur) whereas for more complex models lower values per-
form better. This suggests that there is little meaning to have

Fig. 8 Impact of the minimal increase of log likelihood on models
with different number of mixtures in the case of application words

too many different (specialized) models with low complex-
ity as these models lack the modeling abilities. This leads
to the construction of more models that have limited dis-
criminative options so these different models are inevitably
similar to each other and thus easily mistaken. Therefore it
is better to let them be robust and allow the splitting only for
very distinct cases that can be properly distinguished even
by simple models. The opposite is true for complex models
where the higher number of mixtures increases their mod-
eling capacity so even small differences can be described
accurately. This would end up in the higher number of dis-
tinctive and more precise models. However, the need for
a balance between the accuracy and robustness in the case
of limited data is obvious when investigating any particular
course of WER for a given log likelihood and application
words test. As it can be seen form Fig. 8 there is an ob-
vious overtraining phenomenon, as the best results are ob-
tained for middle complex models (from 4 to 16 mixtures).
Therefore there are three aspects that are acting together: the
complexity of final models (number of mixtures), number
of distinctive groups of states, and the existence of limited
training data. As there is a greater variety of CD phonemes
and less data for application words test the overtraining phe-
nomenon takes place (in the tested ranges). Thus the aver-
aged errors over different models do not provide expected
“V” like shape behavior as there are more acting factors.
Namely, the overtraining interferes with the finding that is
better to have higher number of separate states for more
complex models and fewer distinctive states for less com-
plex models.

For digit strings and the tested tying ranges the WER has
monotonically declining course as the number of mixtures
is increasing regardless of the log likelihood and occupancy
counts, Fig. 9.

This is because there were many training examples for
relatively limited set of phonemes so even complex models
had abundance of training data (there were over 5500 real-
izations for every single digit) thus any reasonable increase
of mixtures caused the drop in error rates regardless of the
tested tying options (no overtraining). To conclude the dis-
cussion the final optimal settings would depend on the type



J. Kacur, G. Rozinaj

Fig. 9 Impact of the minimal increase of log likelihood on models
with different number of mixtures in the case of digit strings

of the application and available database, so it is wise to ex-
periment with different settings having in mind the outlined
behavior and relations; however in the most reasonable cases
the differences are not substantial. If the final application is a
dialog like with finite grammar (it is known what sort of in-
formation it is to be recognized in which stage) the designer
can make a use of models trained with different setting and
of different complexity in each stage of the dialog as the best
results are provided by different models.

5 Training database and the testing settings

A vital aspect to succeed in building an accurate and robust
speaker independent recognition system is the selection of
the proper training database. So far many databases follow-
ing different employment assumptions and designing goals
have been designed and compiled, like: AURORA, TIMIT,
SPEECHDAT, SPEECON, etc. Furthermore, the task of
recognition is more challenging in adverse environments
and requires more steps, additional pre-processing and more
sophisticated handling. Since we wanted to demonstrate to
the full extend the capabilities, options, modification and
pitfalls of the HMM training process, we decided to use
the Slovak MOBILDAT database [12] which was recorded
over GSM networks and generally provides more adverse
environments (wider range of noises, lower SNRs, distor-
tions by compression techniques and short lapses of con-
nections). The concept of MOBILDAT database is based on
the widely used structure of the SPEECHDAT database, for
which many versions have been built in several languages
using fix telephone lines and are regarded as professional
databases.

The MOBILDAT-SK database consists of 1100 speakers
that are divided into the training set (880) and the testing set
(220). Each speaker produced 50 recordings (separate items)
in a session with the total duration ranging between 4 to 8
minutes. These items were categorized into the following
groups: isolated digit items (I), digit/number strings (B,C),
natural numbers (N), money amounts (M), yes/no questions

(Q), dates (D), times (T), application keywords (A), word
spotting phrase (E), directory names (O), spellings (L), pho-
netically rich words (W), and phonetically rich sentences
(S, Z). Description files were provided for each utterance
with an orthographical transcription but no time marks were
supplied. Beside the speech, following non- speech events
were labeled too: truncated recordings (∼), mispronuncia-
tion (∗), unintelligible speech (∗∗), filed pauses (fil), speaker
noise (spk), stationary noise (sta), intermitted noise (int),
and GSM specific distortion (%). In total there are 15942
different Slovak words, 260287 physical instances of words,
and for 1825 words there are more than one pronuncia-
tion listed (up to 5 different spellings are supplied). Finally,
there are 41739 usable speech recordings in the training por-
tion, containing 51 Slovak phonemes, 10567 different CD
phonemes (word internal) and in total there are slightly more
than 88 hours of speech.

Accompanying the MASPER training procedure, there
are three test scripts working with test sessions defined in the
database. These tests are: Small vocabulary isolated phrases
(SVIP) contained in I marked recordings, medium vocab-
ulary isolated phrases (MVIP) working with A recordings,
and small vocabulary word loop (SVWL) applied to B, C
recordings. Tests are however performed only over utter-
ances free of mispronunciation, unintelligible speech and
truncated speech. Abovementioned tests are applied to all
models that were produced during the training so that a pos-
sible overtraining can be detected, and the best models cho-
sen. Both word error rates and sentence error rates are com-
puted, however more common are WER. In the evaluation
process the recognized words are aligned with the transcrip-
tion so that the minimal mistake is achieved using the num-
ber of substituted words, deleted and inserted words [25].
Before the evaluation, all marks for non- speech events are
removed from the transcription files and in the case of digits
two word mappings are performed.

6 Conclusions

Even though there are many new and improved techniques
for HMM modelling of speech units and different feature
extraction methods, still they are usually restricted to lab-
oratories or specific conditions. Thus most of the practical
systems designed for large vocabulary and speaker indepen-
dent tasks use the “classical” HMM modelling by CDHMM
with multiple Gaussian mixtures and tied CD models of
phonemes.

In this article the construction of robust and accurate
HMM models was presented using one of the most pop-
ular system and the training scheme. All the suggested
and presented modifications were tested on the professional
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MOBILDAT-SK database that poses more adverse environ-
ment. Three issues were tackled: feature extraction meth-
ods, HMM training schemes, and tying process for CD
phonemes.

In the case of extraction methods, PLP an MFCC with
their auxiliary features were tested. It was observed that PLP
features themselves are better in describing the static speech
for recognition purposes. The incorporation of dynamic fea-
tures is vital for both methods; however their contribution
for PLP was more relevant. On the contrary the inclusion
of C0 (static feature) and application of the cepstral mean
subtraction (constant processing) was much more benefi-
cial in the case of MFCC. Furthermore, the voicing feature
was tested as well and proved to be surprisingly beneficial
for both methods; the average improvement for PLP was
19.96% and 24.51% for MFCC.

Further a modification to the MASPER training scheme
was designed and tested. Its main contribution is to save
some useful data from the damaged recordings by construct-
ing BH model for garbled speech. By doing so the number
of phonemes’ instances increased by more than 9%, triphone
instances on average by 8.7%, and 0.6% more triphones was
found. This led to more than a 5% improvement for complex
models of CD phonemes. More BH models were tested with
different training strategies, were the best one uses a 3 state
ergodic model trained alone using CI models derived from
the “health” recordings and applied only to the training of
CD phonemes.

Finally, tying options for CD phoneme models using
the decision trees and a linguistic phoneme classification
were tested. Within the examined ranges the differences in
achieved results were relatively minor, however different be-
havior was observed for different models and tests. In the
case of the existence of many triphones on limited data an
overtraining phenomenon was observed for more complex
models. In this case it was further observed that for less com-
plex models, fewer distinctive states perform better, whereas
for more complex models (more mixtures) higher number of
separate states (not tied) is better. This can be viewed as that
the less complex models do not have the required modeling
capability, thus there is no use to have many distinctive states
that can be easily mistaken. However, setting proper options
is a tricky task that is database and application specific. For
different applications different models and settings perform
better. This suggests using several sets of models that can
be switched among according to the recognition task (digit
items, names, applications words, etc.). It should be noted
that some of the presented modifications and settings were
successfully used while building Slovak ASR system [22].
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