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Entropic Thresholding Using a Block Source Model
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Since the pioneer work of Frieden (J. Opt. Soc. Am. 62, 1972,
511-518; Comput. Graphics Image Process. 12, 1980, 40-59), the
entropy concept is increasingly used in image analysis, especially
in image reconstruction, image segmentation, and image com-
pression. In the present paper a new entropic thresholding method
based on a block source model is presented. This new approach is
based on a distribution-free local analysis of the image and does
not use higher order entropy. Our method is compared to the
existing entropic thresholding methods. @ 1995 Academic Press, Inc.

1. INTRODUCTION

The idea of using the entropy concept in communica-
tion systems has become more appealing since the excel-
lent work of Shannon [1]. In image analysis problems this
universal concept [2] has been an attractive and powerful
tool in image restoration and image segmentation, since
the pioneer work of Frieden [3, 4} and Jaynes [5].

In restoration problems the basic idea consists in defin-
ing a statistical model for the image and then an entropy
which is maximized, under some constraints, in order to
get an image which fits the incomplete known data. This
approach used by Skilling et al. [6-8] and Djafari [9] is
called the MAXENT method or maximum entropy
method.

In image segmentation the use of the entropy concept
has been introduced, for the first time, by Pun [10, 11] for
gray-level thresholding. Since then, Johannsen and Bille
[12], Kapur et al. [13], Sahoo and Wong [14, 15], Abuta-
leb [16] and Pal and Pal [17, 18] have continued this work.

For many important applications in biomedical image
analysis [19] or industrial inspection, the need to design a
decision function allowing the discrimination of objects
in a given scene often arises. Given the diversity in gray-
level thresholding techniques [14, 20], the natural ques-
tion is: How do the techniques compare, and which is the
best?

The intent of this paper is not to answer this question
but to propose a new approach of gray-level thresholding
based on the digital entropy concept already used by Pun.
In Pun’s method, the a posteriori entropy of the gray-
level histogram is maximized to get the optimum gray-
level threshold. However, this approach presents some
drawbacks that have been pointed out by Kapur et al.
[13] who proposed another algorithm to correct the errors
introduced in the first method of Pun [10]. Note that the
method of Kapur et al. is very similar to that developed
by Johannsen and Bille [12]. Both methods use the first-
order entropy. However, though Kapur ef al.’s algorithm
has given some improvements to Pun’s method, some
questions still are unsolved as have been already noted
by Pun. Indeed, an open question is: What happens if two
different images have the same histogram? This leads to a
second question: Will it be necessary to use higher order
entropy?

These two questions induced Pal and Pal [17, 18] to use
the probability of co-occurrence of the gray levels to de-
fine the entropy. Then, they introduced higher order en-
tropy for gray-level thresholding. Their algorithm is
based on a second-order statistic analysis already devel-
oped in a previous paper by Deravi and Pal [21].
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In the same time Abutaleb [16] proposed a very similar
approach using a two-dimensional entropy for gray-level
thresholding. His method is also based on a local analysis
of the image. A 2D histogram is computed by examining
the image through 3 x 3 overlapping neighborhoods. In
each 3 x 3 neighborhood the mean gray level is computed
and associated to the gray level of the central pixel to
form the corresponding entry in the 2D histogram repre-
senting the probability of co-occurrence of the pair (gray
level, mean gray level). Abutaleb has compared his algo-
rithm to that of Pun and Kapur and has shown its effi-
ciency in the threshold detection accuracy. But his algo-
rithm requires an increased computational time, since the
entropy criterion function is bidimensional. Further-
more, in Abutaleb’s method two thresholds are computed
but Abutaleb did not explicitly say how to threshold the
image with respect to the bidimensional function. In fact,
the two gray-level thresholds which maximize the deci-
sion function define four regions in the (gray level, mean
gray-level) space. But, only two quadrants, namely the
object and the background quadrants, are considered in
the computation. The two others which contain informa-
tion about object/background transitions and noise are
ignored in the method of Abutaleb. This drawback has
been noted by Brink [22] who proposed an improvement
of the method by using the max—min technique to detect
the optimum threshold. However, this method is much
time consuming since it searches the gray-level threshold
in a 4D space. In contrast, in Pal and Pal’s method one
optimum gray-level threshold is computed from a sec-
ond-order entropy and the method is faster than that of
Abutaleb. Furthermore, in the method of Pal and Pal ob-
ject/background and background/object transitions are
taken into account. Indeed, for a gray-level threshold ¢
the co-occurrence matrix [C), where Cj is the number of
occurrences of pairs of pixels, that with i gray-level and
the neighbor (the upper or the left one) with j gray-level,
is subdivided into four quadrants A, B, C, and D repre-
senting respectively object (i < ¢, j < 1), object/back-
ground transition (i < ¢, j > 1), background i>tj>1,
and background/object transition (i > r, J=1).Pal and Pal
define two entropies, namely the local entropy H,c corre-
sponding to the case when the image is viewed as com-
posed of two classes, object and background; and the
conditional entropy Hgp when only transition regions B
and D are considered. Thus, two algorithms are pro-
posed. The first one uses a second-order local entropy
Hyc and the second is based on the conditional entropy
Hyp. Both entropies are computed from the probability
of co-occurence of gray-level pairs in a 2 X 2 neighbor-
hood.

In our approach we show that it is possible to exploit
the spatial correlations of the pixels without using higher
order entropy as in Pal and Pal’s and Abutaleb’s meth-
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ods. The basic idea of our method is to define another
symbol source in the image which leads to a first-order
entropy nonsensitive to the gray-level distribution in con-
trast to the methods of Pun, to that of Bille and Jo-
hannsen, and to that of Kapur ez al.

Following the idea of Kunt developed in his Strategy of
coding facsimile images [23], a new source mode] for
entropic thresholding is derived and evaluated through a
comparison with the existing entropic methods.

The organization of the paper is as follows. The new
source model for entropic thresholding is presented in
Section 2. In this section we describe and discuss two
approaches. In Section 3, we present the results obtained
on some images. Finally, in Section 4 the overall valua-
tions are summarized and discussed.

2. A NEW SOURCE MODEL FOR
ENTROPIC THRESHOLDING

Before introducing the block source model, let us re-
call some definitions and statements derived from the
information theory [2] and used in this paper. To measure
the entropy associated with a given experiment one has
to define the corresponding source of information and a
set of associated symbols. It becomes then possible to
define a random variable x, which takes its values in the
set of the possible symbols, and consequently a probabil-
ity function P(x). For example, in the case of a digital
image the elementary source is the pixel and the associ-
ated symbols could be the gray-level values. In this case
the probability Py that a pixel (i, j) randomly selected
from the digital image will have some gray-level could be
approximated by the relative frequency (N,/N) at which
this gray level occurs in the digital image of size N. If we
have some prior measure m; about the state k one could
use the Shannon-Jaynes entropy or the Kullback—
Leibler number [24], which was extensively used in im-
age restoration methods [6-8] and defined by

Py
mk'

H=-3% Plog 1)
k

It is a measure of the information content in the probabil-
ity distribution P, relative to the given prior my. If we
have no prior knowledge, we take all my equal to a con-

stant which yields to the well-known Shannon entropy
defined by

H= -3 P.logP,. )
k

'In the following the entropy of Shannon given by Eq. (2)
1s used. In order to define a probability distribution and
thus the associated entropy, the image is analyzed with




ENTROPIC THRESHOLDING USING A BLOCK SOURCE MODEL

respect to a given source model. The basic idea of the
proposed method is to analyze the image through a win-
dow which is considered as a source of symbols corre-
sponding to the gray-level values of the pixels within it.
That is, for each gray-level threshold candidate, the two-
tone image composed of black and white pixels is ana-
lyzed through an elementary window which can have a
fixed or a variable size. In the following sections we deal
with the two cases and thus two approaches will be pro-
posed. The symbols associated with this source are the
black and white patterns observed through the analysis
window.

The optimum level is the one which gives a com-
pressed version of the original image containing the
greatest amount of information associated with the given
source symbol. Thus, the entropy takes its maximum
value at a gray level at which one would expect the
threshold value.

2.1. First Approach—Fixed Block Method (FBM)

Let A denote the grid of sample points of a picture
of size L X M, i.e., the set of points (i, j), where i = 1,
2,...,Landj=1,2,. .., M, and g;the gray level of
the (i, j) pixel. For a gray-level threshold ¢ the picture A
can be viewed as a set of juxtaposed binary blocks of size
m X n pixels where each pixel of an original gray-level g;
is either black (if g; = ) or white (if g; > ). The source is
then the block of size m x n and the 2™ different binary
pixel configurations of the block can be considered as
source messages. For the sake of simplicity, we chose
m = n = g, l.e., the image is subdivided into square
blocks of the same size K = s X s. In this approach the
blocks are assumed to be statistically independent. This
assumption will be dropped out in the next approach.

Let B = {0, 1}X denote the set of binary (s X s) blocks.
The number of elements in B, i.e., the number of possible
block configurations is NV = 2K, Let By be a subset of (s X
s) blocks containing k£ ones (white pixels) and K-k zeros
(black pixels). The binary source probabilities {P;}, Py =
Prob{block € B} is measured by analyzing all juxtaposed
blocks in the image. An example of the possible pixel
configurations or symbols corresponding to s = 2 and k =
2 is given in Fig, 1.

In this approach there are three major constraints. The
first one is the large number of different configurations
when s is large. For instance, a block size of 5 X § pixels
requires an array of 227 entries to store the number of
different configurations. The different configurations
could be stored in a K-bits register. The second con-
straint is the choice of the block size. Indeed, a small size
for the analysis block could not be sufficient to describe
the geometric content of the image. The last constraint is
due to the fact that in this approach the blocks are as-
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FIG. 1. Example of the possible symbols associated with a block
source for s = 2 and k = 2.

sumed statistically independent. But this restriction is
counterbalanced by the great number of possible symbols
associated with the pixel configurations of the analysis
block.

Once the probability distribution is computed, one can
determine the optimum gray-level threshold by maximiz-
ing the associated entropy. The search procedure con-
sists in varying ¢ and searching for the maximum value of
the a posteriori entropy H(¢) given below:

N
H(f) = —kgl Py(2) log Py (). (3)

Here Py is the probability to find a block in the kth con-
figuration. Then, the optimum threshold ¢* is * =
Arg{Max[H(0)], ¢ € [gmins &mar]}, WheTe [gmin, &max] is the
gray-level range. It can be easily shown that H(?) is
bounded by the maximum value H,.(f) = log, K, which
corresponds to a uniform probability distribution, i.e.,
P () = 1/2X. This corresponds to a purely random image
or a white noise image. '

2.2, Second Approach—Moving Block
Method (MBM)

In the previous approach, the image was subdivided
into juxtaposed blocks. Now a moving window with a
variable size is used to analyze the image. In order to use
large sizes for the analysis window, the block configura-
tions are assumed to be indistinguishable. That is, for a
given block size and a candidate threshold ¢ different
configurations of blocks containing the same number of
white pixels are considered as the occurrence of the same
source symbol. For example, for s = 2 and & = 2, the six
configurations shown in Fig. 1 are equivalent. For a
threshold candidate ¢ the number N(s, £), representing
the number of blocks containing £ white pixels, whatever
the spatial organization of the pixels in the block, is com-
puted. Then the a posteriori probability P.(s, ¢) that a
block of size s X s randomly selected from the digital
image will have N, white pixels could be approximated
by the relative frequency (Ni(s, £}/ N;) at which this con-
figuration occurs in the digital image of size N, blocks.
Obviously the number of possible configurations is s2 + 1
if the configuration corresponding to a totally black block
(ie,k=0,1,. . .,sYistaken into account. Therefore,
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the maximum a posteriori entropy which corresponds to
an uniform probability is

Hpax(s, 1) = lOg(SZ + 1), @)

and the a posteriori entropy associated with the probabil-
ity distribution P,(s, ¢) is

Hs, 1) = —LEO Py, 1) log P(s, 1). o)

Block Size Effect. Note that for s = 1, the proposed
algorithm yields a trivial threshold which splits the gray-
level histogram into two equal populations as in the first
approach of Pun [10]. Taking into account this drawback,
the block size must be greater than one pixel, Further-
more, if s = 1, we do not exploit the spatial correlation of
the pixels, whereas the aim of the proposed approach is
to exploit these correlations.

In the other extreme case, i.e., n = L, m = M, when
the whole image is considered as a unique block, the
entropy is zero. Indeed, the degree of uncertainty is zero
since there is one possible configuration. Between these
two extreme situations one has to adapt the block size to
the image structure as in the coding technique of Kunt
{23]. For structured images the block size must be small
enough and comparable to that of the likely pattern in the
image, whereas for unstructured images the block size
can be larger.

The Optimum Block Size. Note that at small s the
local patterns are simple. But they are highly correlated
with each other. The one-cell function P,(s, t) at small s
does not contain these correlations. At large s the local
patterns are statistically uncorrelated but each one of
them is nearly as complex as the geometry of the whole
two-tone image. There must then exist an intermediate
length scale s* at which on the one hand the local geome-
tries are relatively simple, and on the other hand the
single-block distribution function has sufficient nontrivial
geometric content to be a good first approximation of the
geometrical information. The idea is then to maximize
the geometrical content contained in P(s, ) with respect
to s and ¢, This can be achieved by using the maximum
entropy principle.

It is possible to overcome the ambiguity in the choice
of the block size. Indeed, the entropy maximization can
be performed in the 2D space (s, 1), representing the gray-
level threshold ¢ and the block size s. As in Abutaleb’s
approach, if for a given application an accuracy in the
threshold detection is required, one can maximize the
criterion entropy H(s, f) with respect to the gray-level
threshold ¢ and to the block size s. This procedure is of
course time consuming but some improvements can be
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done to localize the entropy maximum. For example, one
can restrict the domain of investigation by examining
some relevant quantities in the image such as the gray-
level histogram [25, 26]. Since the entropy depends on
the considered block size, one has to normalize the en-
tropy in order to compare the values obtained for the
different block sizes. Then, the a posteriori configuration
entropy reads

H*(s, t) = H(s, t}/ Hpax(s, 1). (6)
Now the configuration entropy is such that 0 < H*(s, ¢) <
1, for all s values.

To get the optimum gray-level threshold we proceed by
increasing ¢ and s successively. As in the first approach,
the optimum threshold is obtained by maximizing the a
posteriori configuration entropy,

t* = Arg{Max[H*(s, D5t € [tmin, tmaxls 5 = 2,. .., selh,
)]

where [fmin, tmax] is the domain of investigation for the
candidate threshold and s, is the maximum block size
which is taken to be equal to L/2.

3. RESULTS AND DISCUSSION

Many methods for image segmentation have been de-
veloped. However, little effort has been spent on the
development of a quantitative and objective study on the
validation of these methods [27). This is due to the fact
that the selection of an appropriate technique for a spe-
cific type of image is a difficult problem., As a conse-
quence no single standard method of image segmentation
has emerged and all the existing methods are very often
ad hoc [28-30]. The same conclusion appears in a recent
review of image segmentation methods [31]. Recently,
Zhang and Gerbrands [32, 33] have proposed a quantita-
tive and objective approach for image segmentation eval-
uation and comparison. The basic idea is similar to that of
Yasnoff er al. [34]. It consists in defining quantitative
error measures useful in the comparison of image seg-
mentation techniques. Five properties which must be
verified by such measures have been defined. The error
measures used by Zhang and Gerbrands are similar to the
misclassification error computed from the standard con-
fusion matrix defined in [34]. The same idea has been also
used by Lee et al. for a comparison study of some global
thresholding methods [35].

The proposed method has been tested on synthetic and
actual images and has been compared to the existing en-
tropic thresholding methods. The obtained results are
discussed below. For actual images only subjective crite-
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ria, namely, the visual perception quality, are used to
compare the results obtained by the different entropic
methods. The synthetic image is used for a quantitative
and objective comparison of the discussed methods.

Remark. Note that the first approach is faster than
the second one since the entropy maximum searching
requires only one block size. Furthermore, a small block
size is sufficient to take into account a large number of
configurations compared to the second method. How-
ever, the block are assumed statistically independent,
whereas in the second approach the block dependence is
taken into account since the analysis window is moving.
Also note that the proposed method is noise sensitive.
Thus, a filtering process is often necessary before
thresholding the image.

3.1. A Qualitative and Subjective Evaluation of the
Proposed Method

The image shown in Fig. 2a is a digitized transmission
electron micrograph of a gold thin film. The light back-
ground is the glass onto which gold is deposited by
coevaporation. The gold clusters appear in dark tone. We
know that this physical image is composed of two classes
of pixels: gold pixels and glass pixels. The algorithm of
Abutaleb totally fails for this image as shown in Fig. 2b.
Note that Abutaleb did not tell how to threshold a given
image. Through his results, it seems that he used one
threshold and consequently the pixels corresponding to
object/background and background/object transitions are
neglected. In the present study, these transitions are
taken into account, thus two thresholds corresponding to
the maximum of the two-dimensional criterion function
of Abutaleb are computed. Then four regions are defined
in the decision space. For this particular image, only two
regions were detected in the decision space.

Through Figs. 2b-2h, one can observe that the results
obtained with our method (the MBM algorithm, Fig. 2¢
and the FBM algorithm, Fig. 2d), the method of Pun (Fig.
2e), the method of Kapur et al. (Fig. 2f) and algorithm 2
of Pal and Pal (Fig. 2h) are identical. But algorithm 1 of
Pal and Pal (Fig. 2g) totally fails for this image.

Figure 3a shows another actual image representing a
material plastically deformed in fatigue and observed in
the electron microscope. One can see a dark background,
light bands, and a light grid. We tested the entropic
thresholding algorithms mentioned above on this image.
The obtained results shown in Figs. 3b to 3h clearly dem-
onstrate the superiority of our method (MBM, Fig. 3¢
and FBM, Fig. 3d) and those of Pun (Fig. 3e) and Kapur
et al. (Fig. 3f) for this particular example. In fact, the grid
is totally eliminated by all the other algorithms using a
second-order entropy, whereas it is preserved by our al-
gorithm and those of Kapur et al. and Pun.

L

FIG. 2. (a) Original image, (b) algorithm of Abutaleb, (c) MBM
algorithm, (d) FBM algorithm (¢) method of Pun, {f) method of Kapur et
al., (g) algorithm 1 of Pal and Pal, and (h) algorithm 2 of Pal and Pal.

Another image representing a girl’s portrait is used as a
test image. In this case, our method is superior to all the
other methods. In fact, even Kapur et al.’s method fails
in preserving some details. For instance, the nose is well
preserved with our algorithms (MBM, Fig. 4c and FBM,
Fig. 4d), whereas with Kapur et al.’s method (Fig. 4f)
and with Pun’s (Fig. 4e) it is nearly suppressed. The same
effect can be noted for the girl’s glasses. The other meth-
ods of Abutaleb (Fig. 4b) and Pal and Pal (Figs. 4g and 4h)
totally fail for this special case.
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FIG. 3. (a) Original image, (b) algorithm of Abutaleb, (¢) MBM
algorithm, (d) FBM algorithm (e) method of Pun, (f) method of Kapur et
al., (g) algorithm 1 of Pal and Pal, and (h) algorithm 2 of Pal and Pal.

Another interesting result is that our approach yields a
threshold between the two extreme values, confirming
thus that our method is a compromise between the global
approaches of Pun and Kapur et al, and the local ap-
proaches of Abutaleb and Pal and Pal.

3.2. A Quantitative and Objective Comparison

In order to compare the discussed methods we use the
same approach of Zhang and Gerbrands inspired from
that of Yasnoff er al. Synthetic images are then used for
quantitative evaluation of our method and for compari-
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FIG. 4. (a) Original image, (b) algorithm of Abutaleb, (¢) MBM
algorithm, (d) FBM algorithm, (e) method of Pun, (f) method of Kapur
et al., (g) algorithm 1 of Pal and Pal, and (h) algorithm 2 of Pal and Pal.

son. The first synthetic image is generated by the lumi-
nance function

g(x, y) = go + gm cos 2mux, (8)

where (x, y) are the pixel coordinates, go is the mean
gray-level of the background, g, is the AC component,
and v is the spatial frequency. One can generate different
shapes by varying the spatial frequency and the global
contrast given by C = g./go. The g(x, y) is nothing else
than a sinusoidal grid pattern. Figure Sa depicts the half
period, say a = 1/2v, of this signal, for a given y value
and the corresponding gray-level histogram P(g). Here,
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P(g)
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FIG. 5. (a) Luminance profile and (b) histogram of the computer-

generated image.,

the gray-level threshold is the level of points lying on the
edge. It can be easily computed by detecting the zero-
crossing of the second derivative of g(x, y) function. In-
deed, the equation V?g to zero yields x = a/2 which cor-
responds to the threshold t* = g(a/2) = go. This result
can be also obtained by analyzing the luminance distribu-
tion function P(g). In fact, it can be easily shown that

1 1

Plg) = .
© =5 Vem V1 — ((g ~ go)lem)?

&)

The representative curve shown in Fig. 5b clearly de-
picts a deep valley where the optimum threshold can be
obtained by solving the equation dP/dg = 0, which leads
to g = go. A half period of this synthetic image has been
generated with g = 64 and a maximum contrast C = 1.
The optimum threshold is equal to gy = 64 as demon-
strated previously. All the discussed thresholding algo-
rithms have been applied to this image. The obtained
results are in good agreement with the theoretical previ-
sion except for the algorithm of Pal and Pal based on the
conditional entropy. To show why this algorithm totally
fails for this image let us consider an 8 X 8 matrix [g]
representing a half period of signal g(x, y) generated with
a=8,g0=4,C=1l,and0=x,y <&

(gl =

co oo o0 OO 00 OO GO 0O
NN N N NN

[« S = N o NN =) S e S & AU = S =
(.Y S Y Y Y Y Y
W W W W W W W W
NN RN N NN
T T
o O o o o o O o

The edge gray-level or the threshold is obviously equal to
4 in this case, The corresponding co-occurrence matrix of
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[g], computed for a distance equal to 1, in both horizontal
and vertical directions as in [17, 18],

(70000000 0]
870000000
087000000
008700000
[C1=|0 0000000 0
000807000
000008700
000000 B8 70
L0000 O0OO0 8 7]

Now, Pal and Pal’s second algorithm relies on the con-
ditional entropy to compute the threshold which in this
case is equal to 0 for all possible threshold gray-levels.
Indeed, one can notice from this co-occurrence matrix
that the two conditional entropies corresponding respec-
tively to object/background and background/object tran-
sitions are equal to 0 for all gray-level thresholds. That
means that the second algorithm of Pal and Pal gives a
threshold equal to 0, while the optimum threshold is
equal to 4 in this case, as analytically shown before. This
example shows that the Pal and Pal’s second algorithm is
not always superior to the first one as claimed by them in
[17, 18].

Now if a complete period of the signal g(x, y) is used,
all the discussed algorithms give a threshold value which
deviates from the optimum value except for the first algo-
rithm of Pal and Pal and our two algorithms. The devia-
tion of the other algorithms from the exact threshold
value (¢* = 64) is about two or three levels. Furthermore,
the second algorithm of Pal and Pal totally fails.

Another synthetic image similar to that used in [32, 33]
is used to evaluate the proposed methods and to compare
them to the other entropic methods. Figure 6 depicts the
results obtained when applying the different algorithms
to the blurred image (Fig. 6b) obtained by convolving the
original image (Fig. 6a) with a Gaussian filter with a stan-
dard deviation o = 5. This synthetic image of size 128 X
128 is composed of a background of gray-level-64, four
disks (radius 15 pixels) with a homogeneous gray-level
127 and one circular disk (radius 31 pixels) with the same
gray-level 127. Note that all the cited algorithms give the
exact threshold (#* = 64), except for the second algo-
rithm of Pal and Pal. This is not surprising since this
algorithm uses the background/object transition informa-
tion. Indeed, this image does not contain fransition re-
gions.

Note that in [32, 33] the quantitative measure for com-
parison is not directly computed from the thresholded
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image but after applying a morphological filter to the seg-
mented image. Thus, some misclassified pixels corre-
sponding essentially to the synthetic additive noise are
smoothed out by morphological filter, namely an opening
or a closing [36]. In the present study we do not modify
the obtained segmented image as done in [33]. Further-
more, the approach of Zhang and Gerbrands, which con-
sists of defining the optimum gray level as the level which
preserves some morphological parameters such as the
area or the perimeter of the objects after applying a deg-
radation process to the image, is not appealing. Indeed, it
is well known that applying a blurring function to a given
image increases the object size and consequently shifts
the edge location [37]. Thus, using morphological param-
eter preservation as criterion for performance assess-
ment is not relevant. Then in the present approach we
use the measure of the blurring effect as a quantitative
measure for comparison of the different algorithms,
The obtained results shown in Fig. 6 confirm once
again the superiority of the proposed methods, especially
the MBM algorithm, over the other existing entropic
thresholding methods. Indeed, the thresholded image
(Fig. 6i) points out the exact location of the edges corre-
sponding to a Gaussian filter of a standard deviation o =
5. This result is confirmed when applying a second-deriv-
ative operator such as the digital Laplacian. All the other

g h i

FIG. 6. Synthetically generated image: (a) original image, (b)
blurred image, (c) algorithm of Kapur er al. (r* = 72), (d) algorithm of
Pun (+* = 90), (e) algorithm of Abutaleb (+* = 96), (f) algorithm 1 of Pal
and Pal (r* = 99), (g) algorithm 2 of Pal and Pal (r* = 99), (h) FBM
algorithm (¢* = 90), and (i) MBM algorithm (¢* = 76).
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methods give a gray-level threshold which does not cor-
respond to the exact background/object transition loca-
tion (see Figs. 6¢—~6h).

4. CONCLUSION

It is demonstrated through some examples that our
gray-level thresholding method using a first-order en-
tropy is superior to the existing entropic thresholding
methods in some cases. It is also shown that for some
images, the methods of Pal and Pal and that of Abutaleb
are not superior to that of Kapur et al. as has been
claimed by these authors in previous papers.

It is shown that the proposed method is a compromise
between the global approaches of Pun, Johannsen and
Bille, and Kapur et al. and the local approaches of Pal
and Pal, and Abutaleb.

Through this paper, it is shown that it is possible to use
a first-order entropy, which is gray-level histogram free,
to localize the optimum gray-level threshold. Thus, we
have given answers to Pun’s questions. We have also
shown that using a synthetic image where the gray-level
threshold can be analytically computed is a good ap-
proach for comparing the image thresholding methods.
This approach has been combined with that of Zhang and
Gerbrands.

In this paper we have restricted our attention to one
threshold, though the method can be extended to
multithresholding cases which will be developed in the
near future.
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