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Correspondence

A New Criterion for Automatic Multilevel Thresholding

Jui-Cheng Yen, Fu-Juay Chang, and Shyang Chang

Abstract—In this correspondence, a new criterion for multilevel thresh-
olding is proposed. The criterion is based on the consideration of two
factors. The first one is the discrepancy between the thresholded and
original images and the second one is the number of bits required‘ to
represent the thresholded image. Based on a new maximum correlation
criterion for bitevel thresholding, the discrepancy is defined and then
a cost Tunction that takes both factors into account is proposed for
multilevel threshalding, By minimizing the cost function, the classification
number that the gray-levels should be classified and the threshold values
¢an be determined automatically. In addition, the cost function is proven
l0 possess a unique minimum under very mild conditions. Computational
analyses indicate that the number of required mathematicat operations in
the implementation of our algorithm is much less than that of maximum
entropy criterion, Finally, simulation results are included to demonstrate
their effectiveness.

L. INTRODUCTION

In image processing, it is often necessary to extract objects
from an image and represent them efficiently. The most commonly
used method is to identify the different homogeneous regions of
an image by gray-level thresholding [1]-{3]. The results can then
be applied to automatic target recognition [4], text enhancement
[5). [6], industrial application of computer vision [7], biomedical
image analysis [6), [8], [91, ete, In order to evaluate the threshold
values, many methods have been proposed. There are essentially
two main approaches: parametric [10}, (11] and nonparametric [12],
(13). In the parametric approach, the computational complexity is
high. Moreover, the deviation between the histogram of the acquired
image and the assumed model usually results in poor performance. On
the other hand, the nonparametric approach determines the threshold
values in an optimal fashion based on a given criterion [12]-[15].
It can be shown that it is robust and more accurate than the
parametric one. However, this approach has two main drawbacks.
1) The classification number that the gray-levels should be classified
is difficult to decide and usually is given by supervision. 2) Large
computational time is required for determining the threshold values
in multilevel thresholding.

In order to overcome these problems, a new criterion for multilevel
thresholding will be proposed in this correspondence. Two important
factors [16] are considered in our approach. The first one is the
discrepancy between the thresholded and original images, and the
second one is the number of bity required to represent the thresholded
image. Based on a new maximum correlation criterion [ 17] for bilevel
thresholding, the discrepancy is defined and then a cost function that
takes both factors into account is proposed for multilevel thregh-
olding. By minimizing the cost function, the classification number
that the gray-levels should be classified and the threshold values
can be determined automatically. In addition, the cost function is
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proved to possess a unique minimum under very mild conditions, The
novelty of this criterion is twofold. 1) The classification number ang
threshold values are automatically determined. 2) The computationa]
complexity is low. Computational analyses and simulation resylts
will demonstrate its effectiveness.

This correspondence is organized as follows. In Section 11, the
conventional maximum entropy criterion is reviewed and then the
maximum correlation criterion is proposed for bileve] thresholding,
In Section II], based on the maximum correlation criterion, a new
criterion for multilevel thresholding is proposed. Moreover, detailed
analysis will also be given. In Section IV, computational analyses
and simulation results are given to demonstrate the effectiveness of
the new criterion. Section V concludes the correspondence,

I[I. THE MAXIMUM CORRELATION
CRITERION FOR BILEVEL THRESHOLDING

Consider an image f(x, y) of size N x N pixels that are represented
by m gray-levels. Let Gy, = {0,1,..., (m — 1)} denote the set of
gray-levels and f;, 1 € G, be the observed gray-level frequencies
of the image f. The probability of the gray-level i in the image f
can be calculated as

J

Nx N’

Hence, a distribution {p; | i € G} can be obtained. For a given
gray-level s, if Ef;é i s larger than zero and smaller than one, then
the following two distributions can be derived from this distribution
after normalization:

Di = iEGxn-

T LP(s) P(s)" " Pla)

_pa“_ Ps41 Drn—1
1=P(s)’T=P(s)’ " T=P(a)

where P(s) = 33°7 1 p; is the total probability up to the (s — 1)-
th gray-level. In the maximum entropy criterion, the basic idea is
to choose the threshold such that the total amount of information
provided by the object and background is maximized. Since the
information is measured by entropy [18], [19], the total amount of
information provided by A and B is

it

TE(s) = Ea(s) + Fa(s)

s~—1

= (2 (2
- ;) (P(s)) I (P(s))
ny—1

Pi Pi
N g (1 - P(s)) In (1 - P(s))

In[P(s)(1 = P(s))] — H(s)/P(s)
- H'(s)/(1 - P(s)) 2)

(1

where Pls) = 57020 i, His) = — Y02 pi x In(pi), H'(s) =
— 205, poxIn(p:), and In is the natural logarithm. The maximum

entropy criterion (MEC) [12] is to determine the threshold s* such
that

TE(s") = max TE(s). ©)
$s€EGm
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(a) ()
Fig. 1, Original images of (a) “LENA” and (b) “Calligraphy” for bilevel thresholding.

(a) (b)

© @

Fig. 2. Original images of (a) “Lady,” (b) “Vegetable,” (c) “Chinese landscape,” and (d) “C-Bible” for multilevel thresholding.

The total information defined in (1) instead of the conventional Notice that in (1) and (3), many natural logarithmic operations are

average information P(s)E4(s)+(1— P(s))Eg(s) has been adopted  required for bilevel thresholding via MEC. In order to‘reduce tl}e
by. [12]. The reason is that, if the conventional one is used, the —computational complexity, the maximum correlation criterion will
object(s) with low priors P(s) or (1 — P(s)) cannot be segmented  be proposed. Before proposing it, the correlation [17], [20] will be

by the MEC and eventually disappear in the thresholded image. defined as follows.
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(d)
Fig. 3. Gray-level histograms and the optimal thresholded positions of “Calligraphy™ via (a) MCC and (c) MCC. The thresholded images of “Calligraphy”

via (b) MCC and (d) MEC.

TABLE 1 TABLE II
NUMBERS OF DIFFERENT KINDS OF OPERATIONS REQUIRED BY MCC anp MEC OPTIMAL THRESHOLD VALUES LOCATED BY MCC
- AND MEC FOR “LENA” AND “CALLIGRAPHY"
equation operations .
In + X +or - < image .
equation (4) 1 1 (m+5) <(3m/2) 0 criterion LENA Calligraphy
equation (5) 2 0 (m+3) <(3m/2+1) 0
MCC eq. (6) m m  mm+s)  <m3m2) m-1 MCC 120 94 |
equation (1) m m m <(3m/2) 0 ‘
equation (2) m+1 2 m+1 <(Am/2+4) 0 MEC 122 95
MEC ¢q. (3) | m(m+1) 2m mm+1)  <m(3ny2+4) m-1

¢ "m" denotes the number of gray-levels used to represent an image. .

* "<(3m/2)" denotes the required operations are less than 3m/2, entropy dimension and correlation dimension are used for image

* "<>" denotes the comparison operation. representation and real objects modeling. However, the computational

complexity of computing correlation dimension is much lower than

that of the entropy dimension. Hence, the idea of correlation is

adopted here. ‘
Based on the definition, the total amount of correlation provided ;

Definition: Let X be a discrete random variable with finite

or countably “infinite range R = {wg,x1.22....} and p; denote by distributions A and B i
Prob{X = r,}. The correlation of X is defined as ya ons & an B |
, (5) = C ‘ l
C’(X)z"lllz})iz- TC(&) C‘i(i)_-f_ C‘B(“") , o ) l
iz0 pi_\" P i
= —In < . ) —1112 (—“““""“‘_> i
The idea of wsing correlation C'(s) instead of entropy E'(s) ; Pls) i L= P) |

comes from the theory of chaos and fractal. In fractal theory, both

]

—In{[G(s) x G'(8)]/IP%(s) x (1= P(s))*]} (4)
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TABLE III
CLASSIFICATION NUMBER, THE THRESHOLD VALUES, AND
THE REQUIRED CPU TIMES FOR “LADY,” “VEGETABLE,”

“CHESE LANDSCAPE,” AND “C-BIBLE” V1A ATC aND MEC

image criterion | class. no. threshold  values CPU time
ATC 4 (195 (55 (3121 0.11°

Lady MEC 4% 55, 85,116 224.25"
T ATC 3 (1386 ()58 0.12"
Vegetable ™ yipe | 64,102 407"
Chinese ATC 5 (1)85 (A115 (3)61 (H100 0.10"

landscape MEC 5* 56,75, 95,115 3346.45"
ATC 3 (1)83 (2)56 0.09"
C-Bible "™ eC 3 | 62,102 429"

« "*" denotes the classification number is given by supervision,

ngy Vegetable
1000 - 4 1000+ p
g g
& 500 { & soof ]
0 k - 0 ;
50 y 100 50 100
k k
Chinese landscape C-Bible
1000 g 1000 E
g z
A 5001 1 A S0 -
0 L n 0 L
50 100 50 100
k k
(@)
Vegetable
60
- — 40 -
] 5
20 -
0 . 0 .
50 100 50 100
k k
C-Bible
= =
o o
0
50 100 0 50 100
k k
(b)

I;‘ig, 4. Functions (a) Dis(k) and (b) C(k) of four representative images by
TC.

= —In[G(s) x G'(s)] + 2In[P(s) x (1L = P(s))] (5)

where Gi(s) = Y"3") p? and G'(s) = 377" pi. In order to obtain
the maximal correlation contributed by the object and background in
the image f, TC(s) must be maximized. The maximum correlation
criterion (MCC) is to determine the threshold s* such that

TC(s") = max TC(s).

s€EG,

(6)
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IIl. AUTOMATIC MULTILEVEL THRESHOLDING

It is well-known that the thresholded image becomes more similar
to the original one as the classification number increases. Hence, the
discrepancy between the original and thresholded images decreases
as the classification number increases. However, the total number
of bits required to represent the thresholded image increases as the
number of classes increases. Hence, there must exist a compromise
between these two factors.

Let k denote the classification number and Dis(k) the discrepancy
between the thresholded and original images. The cost function C{s)
that takes into account both factors is proposed as

C(k) = p(Dis(k))* + (log, (k) M

where p is a positive weighting constant. The first term of C(k)
measures the cost incurred by the discrepancy between the thresh-
olded and original images, and the second measures the cost resulted
from the number of bits used to represent the thresholded image.
The square root of discrepancy Dis(k) has a simitar meaning to the
“standard deviation” of a random variable. There are two reasons
why we adopt the square bit-usage penalty. The first is to use the
“intermediate value theorem” in the proof that C(k) can possess a
unique minimum. The second is to avoid the domination of this term
by (Dis(k))*/2. To achieve the best compromise between C4(Dis(k))
and Cp(logg(k)), C(k) must be minimized. Based on the cost
function C(k), the automatic thresholding cxiterion (ATC) is then
proposed to determine the optimal classification number k™ such that

C(k") = ;;é‘k C(k) (8

where GF, = {L,2,...,m}.
In order to quantify Dis(k), the following notations will be adopted:
k the classification number that the gray-levels are
classified,

sk; the i-th nonzero threshold when the gray-levels are
classified into & classes,

Cy,: the i-th class among these k& classes with
gray-levels from sy i1 to (8k: — 1),

wg, the probability of the class Ci i,

P, the distribution derived from Cy,; after normalized
by Wi,

jik,i  the mean of Py i,

of,; the variance of Py :.

Hence, for a given distribution P = {p: | { € Gm}, the following
relations can be obtained:

8,i—1
Wi, = Prob(Cry) = Z pj ©)
J=ak -1
Pii = {pifwnili € Gs i} (10)
spi=1
poi= 3, §xProb(i|Cri) (1
J=8ki-1
sy, ;-1
obi= 3 (=) x Problj| Crs)
1=k i1
g =1
= Z (G = i) X pjfwii (12)
J=8k i1

where Gy, ; = {Sti—18k,i-1 T Lo {8k — 1)}. In each class,
all the grayilevels are designated to the mean value of the gray-levels




(a)

in that class, The discrepancy Dis(k) is then defined as

ke
Dis(k) = Y Prob(Cl ;) x ai
j:l
A=t ,
Z (i= ) xp
=0
sg =1
+ Z (i — ;u\.,g)2 X ],

1=e g

it

m—1

PR Z (i—/ih-,k)2 X . (13)

RS ke

Choosing the distribution with the largest variance from P, ,’s
and applying MCC to it, this selected distribution can be fur-
ther dichotomized into two more distributions. Hence, the original
distribution P can be partitioned into (k& + 1) distributions after
normalization and the gray-levels of the original image are also
divided into (k+1) classes. Relabel all the thresholds and the (k+1 )-
class version of (9)-(12) can be obtained. Hence, the discrepancy
Dis(k -+ 1) can be defined accordingly,

’
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Fig. 5. Gray-level histograms and the optimal thresholded positionsof “Lady™ via (a) ATC and (c) MEC. The thresholded images of “Lady” via (b)
ATC and (d) MEC.

Intuitively, the thresholded image becomes more similar to the
original one as the classification number increases. Hence, the dis-
crepancy should decrease when the classification number increases.
Now, the defined Dis(k) will be proved to possess this property in
the following.

Proposition 1: Dis(k) is strictly decreasing to zero for k € Gih.

Proof: Straightforward. O

Furthermore, if we assume Dis(k) is of the form a x k=, then
the following proposition concerning C(k) can be obtained.

Proposition 2: If Distk) = a x 2™, a > 0, A > 0, and
p < 4 x 1256 x 2562 /(Aat/?(In2)?), then C(k) has a unique
minimum for k € [1,256].

Proof: 1t is straightforward by using the intermediate value
theorem. =

From Proposition 2, instead of searching in G, globally, the
minimum cost can be determined when C(k) starts to increase. This
implies that the searching procedure in (8) can be terminated and the
computational complexity of ATC can be further reduced.

IV. COMPUTATIONAL ANALYSES AND SIMULATION RESULTS

To demonstrate the effectiveness of the proposed MCC and ATC
for bilevel and multilevel thresholdings, computational analyses and
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(d)

Fig. 6, Gray-level histograms and the optimal thresholded positions of “Vegetable” via (a) ATC and (c) MEC. The thresholded images of “Vegetable”

via (b) ATC and (d) MEC.

simu]ation results on the HP 90007720 workstation with 17 MFLOPS
V.!lll be given. For bilevel thresholding, there are two images of
size 256 x 256, called “LENA” and “Calligraphy.” To compare
Fhe multilevel thresholdings via ATC and MEC, four representative
images of size 256 x 256, called “Lady,” “Vegetable,” “Chinese
landscape,” and “C-Bible,” are used. They are shown in Figs. 1 and 2.

A. Comparisons of Bilevel Thresholdings between MEC and MCC

. The‘numbers of the required operations for MCC and MEC are
lisled in Table I. The optimal thresholds located by both criteria
f(?r these two images are listed in Table II. As a representative,
Fig. 3(?) and (c) illustrates the gray-level histograms combined with
the optl‘mal threshold positions for “Calligraphy” via MCC and MEC,
respectively. All the gray-levels in each class are designated to the
mean value of the gray-levels in that class. Figure 3(b) and (d)
shows the thresholded images of “Calligraphy” via MCC and MEC,
respectively.

_ From Table I, the number of the natural logarithmic operations
is drastically reduced from (m? + m) for MEC to m for MCC.
Moreover, the number of divisions is reduced from 2m for MEC to
m for MCC. The difference in the number of the other operations is
very small. From Table IT and Fig. 3(a) and (c), the optimal thresholds

for “Calligraphy” via MCC and MEC are almost the same. Hence, the
quality of the thresholded images cannot be distinguished by human
eyes from Fig. 3(b) and (d).

These results indicate that the computational complexity of MCC
is drastically reduced as compared to MEC, while the thresholded
images are almost the same.

B. Comparisons of Multilevel Thresholdings between ATC and MEC

In order to apply ATC to these images, p is determined by a set of
test images. In this section, p is 0.8. The classification number that the
gray-levels are classified, the threshold values, and the required CPU
times are all listed in Table Il The functions Dis(k) and C{k) of
“Lady,” “Vegetable,” *Chinese landscape,” and “C-Bible" are plotted
in Fig. 4(a) and (D), respectively. The gray-level histograms combined
with its optimal thresholded positions are shown in Figs. 5(a), 6{a),
7(a), and 8(a). After the optimal thresholds have been located for
each image, we designate all the gray-levels in each class o the
mean value of the gray-levels in that class. Then, the thresholded
images are shown in Figs. 5(b), 6(b), 7(b), and 8(b).

In using the MEC for multilevel thresholding, the classification
number & must be given by supervision. That is, the gray-levels of
“Lady,” “Vegetable,” “Chinese landscape,” and “C-Bible” must be
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classified into 4, 3, 5, and 3 classes, respectively. After applying
MEC to these images, the located optimal thresholds and required
CPU times are listed in Table III for comparison. The gray-level
histograms combined with their optimal thresholded positions are
shown in Figs. 5(c), 6(c), 7(c), and 8(c). After the optimal thresholds
are located, all the gray-levels in each class are designated to the
mean value of the gray-levels in that class. Then, the thresholded
images are shown in Figs. 5(d), 6(d), 7(d), and 8(d).

As can be seen from (14), it is too complex and computationally
expensive to minimize the cost function of MEC as a function
of thresholds although the classification number & has been given
by supervision. On the other hand, our sequential way of finding
thresholds via ATC can reduce the complexity drastically. This can
be confirmed by the required CPU time in Table IIl. Moreover, as
illustrated in Figs. 5-8, our results are quite good. Hence, compared
with MEC, the ATC is a very computationally efficient criterion that
has good performance for multilevel thresholding.

In Section I, the discrepancy function Dis(k) has been proved
1o be strictly decreasing to zero. This can also be confirmed by the
simulation results in this section. After applying ATC to these four
images, Fig. 4(a) indicates that Dis(%) is such a decreasing function
indeed. Moreover, it confirms that our assumption, i.e., Dis(k) is of
the form o x k™%, is quite reasonable. In Proposition 2, we have

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 3, MARCH 1995
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Fig. 7. Gray-level histograms and the optimal thresholds of “Chinese landscape” via (a) ATC and (¢) MEC. The thresholded imapes of “Chinese
landscape™ via (b) ATC and (d) MEC.

proved that each cost function C(%) possesses a unique minimum.
This fact is also confirmed by the four cases shown in Fig. 4(b).
In this figure, C(k) decreases to the minimal value at some &, and
then increases to C(256). Hence, to find the minimum cost, we just
need to calculate C(k) successively until it starts to increase. If the
searching procedure in (8) is performed this way, the required CPU
time of ATC listed in Table ITI can be further reduced.

In the image “Lady” shown in Fig. 2(a), the gray-levels can be
coarsely classified into four classes by human eyes. After applying
ATC to “Lady,”the image is segmented into four homogeneous
regions. As can be seen from Fig, 5(b) and (d), the veins and outline
of the face of using ATC are more clear than that of MEC. In the
images ‘“Vegetable” and “C-Bible,” by using only two thresholds
determined by ATC, the thresholded images are very much like the
original ones. As can be seen from Fig. 8(b) and (d), the thresholded
image of “C-Bible” via ATC has more clear faces and shields
than that of MEC. Moreover, in Fig. 6(d), there are many Sspots
in the thresholded image of “Vegetable” via MEC. In the other,
more complicated image “Chinese landscape,” almost all important
components are reserved in the thresholded image. Moreover, the
stones’ texture in Fig. 7(b) is more clear than that in Fig. 7(d).
The results above indicate that the ATC can automatically segment
these images under the compromise between the discrepancy and the

e



classification number. Moreover, the thresholded results of ATC are
better than those of MEC, These are confirmed by the simulation
results shown in Table I and Figs. 5(b), 5(d), 6(b), 6(d), 7(b), 7(d),
8(b), and R(d).

Notice that if the gray-level histogram and the spatial correlation
between the pixels are both considered in an image, then the 1-D
histogram can be extended to a 2-D one. In this case, the MCC and
ATC can also be extended to deal with a 2-D histogram for bilevel

find multilevel thresholdings and preserve the desirable properties
indicated above.

V. CONCLUSION

In this correspondence, the MCC and ATC have been proposed for
multilevel thresholding to overcome the drawbacks of conventional
ap_pfoaches. The cost function has been proven to possess a unique
minimum under very mild conditions. This proposition has reduced
the searching procedure of ATC and its computational complexity.
Moreaver, the following desirable properties have been obtained. 1)
”I_‘he number of required mathematical operations in the implementa-
tion of MCC is much less than that of MEC. 2) The classification
thumber that the gray-levels should be classified and those threshold
values via ATC are automatically determined. 3) The computational
complexity of ATC is much less than MEC. Simulation results have

"#

(d)
Fjg. 8. Gray-level histograms and the optimal thresholded positions of “C-Bible” via (a) ATC and (¢) MEC. The thresholded images of “C-Bible”
via (b) ATC and (d) MEC.

also confirmed the aforementioned properties. We believe that many
applications in image processing can benefit from using the ATC,
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Motion Vector Quantization for Video Coding

Yoon Yung Lee and John W. Woods, Fellow, IEEE

Abstract—A new algorithm is developed for the vector quantization of
motion vectors. This algorithm, which is called motion vector quantization
(MVQ), simultaneously estimates and vector quantizes motion vectors
by reinterpreting the block matching algorithm as a type of vector
quantization. An iterative design algorithm, based on this concept, is then
developed. In addition to reducing rate for fixed length encoding, the
algorithm also reduces computation considerably. We include promising
coding simulation results on the Flower Garden sequence.

I. INTRODUCTION

Since forward motion compensation using a block matching al-
gorithm (BMA) requires transmission of motion vectors as side
information [6], the block size must be selected as a compromise
between the desire to have a small prediction error and the need
to control the amount of side information, This correspondence
introduces a new combined estimation and vector quantization algo-
rithm for motion vectors, which is called motion vector quantization
(MVQ), to reduce the number of motion vectors needed.
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1 th block in frame k — 1

.....

§; from MVQ codebook

a block in frame k

corresponding search region in frame k — 1

Fig. l. The relationship between the search region and the codebook.

The most common distortion measure used in waveform coding
is the mean squared error (MSE). However, this distortion measure
is not appropriate for coding motion vectors because it does not
consider the effect of distortion on the displaced frame difference
(DFD), defined as the error between the current frame and the motion
predicted frame. Qur MVQ for motion vectors minimizes the variance
of the DFD directly, while iteratively optimizing a codebook of
motion vectors.

II. MOTION VECTOR QUANTIZATION

In the forward matching, BMA is used for obtaining motion vectors
mainly because it requires a small amount of side information. For a
given block in the current frame, BMA searches for the best match
within a search region in the previous frame. The displacement
that represents the best match becomes the motion vector for the
block. BMA can be re-interpreted as a type of vector quantization
(VQ). The search region can be represented as a codebook, C' =
{61,04,...,8x}, where the motion vector , §; = (6,1,6,2)T for
1 € ¢ £ N, are thought of as code vectors. Fig. 1 shows the
relationship between search region and the codebook.

The codebook, or search region, has N motion vectors to represent
N possible block locations in the previous frame. The ith code vector
&, is the motion vector that represents the ith matching block in the
search region. The required rate to transmit the motion vectors is
then r = (log, NY/M? for an M x M block size and fixed length
encoding.

Let s,(x) and &, () be the current and the previous frames,
respectively, We define an input for BMA as a set that consists of
a block

57 = {si(e), r € block B} )]
within the current frame and a portion
M = {s-1(), e search region for B} 2)

of the previous frame in the search region. We can define a distortion
measure associated with the inpit set,{ﬁf’ i 1} and the {th motion
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