r 1993

Thresholding based on histogram approximation

_ N.Ramesh
§ J.-H. Yoo
- |.K. Sethi

Indexing terms: Histograms, Image processing, Thresholding

\Abstract: The authors propose two automatic
threshold-selection schemes, based on functional

approximation of the histogram. The first method
is based on minimising the sum of square errors,
and the second one is based on minimising the
variance of the approximated histogram. Experi-
mental results show that, on average, the latter
scheme gives better results than the former one, at
a small extra computational cost. A ‘goodness’
measure is proposed to measure the effectiveness
of the two schemes, and to compare them against
the entropy-based approach and the moment-
based approach.

1 Introduction

In computer vision, abstractions of objects or features,
which are used in high level tasks, are derived from
images. For the purpose of abstraction, the pixels in an
image have to be grouped into meaningful regions by a
process called segmentation. One way to do segmen-
tation is thresholding. Thresholding in its simplest form
involves mapping all pixels above a threshold value to
one grey value, say white, and the rest to another, say
black. Since the result is an image with two grey values,
the process is called bilevel segmentation. When multiple
threshold values are used, the result is a multilevel image,
and the process is called multilevel segmentation. For a
survey of different thresholding and segmentation tech-
niques see References 1-4.

Many automatic threshold-determination techniques
use the histogram of the image to select a good threshold.
The histogram of an image is the frequency distribution
of grey levels in that image. If, in an image, the objects
have distinctly different grey values from the background,
the histogram will exhibit two different peaks with a
valley between them. Such a histogram is called a
bimodal histogram, and the determination of a suitable
threshold value is a relatively simple matter. In a non-
bimodal distribution, the selection of a good threshold
can be rather difficult. There are a number of methods for
threshold selection discussed in the literature, including
those based on entropy [5-7], moment preservation [8],
error minimisation [9] and maximum likelihood [10].
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One common characteristic of these existing methods is
that they view the histogram as a mixture density func-
tion, and usually treat the problem of threshold determi-
nation as a case of classification. In this paper, we take a
different approach, and view the histogram as a 1-D
function, whose bilevel approximation yields the thresh-
old value for image segmentation. Done recursively, this
approach results in a multilevel approximation of a histo-
gram, and consequently leads to multilevel thresholding,

In this paper, we have described two automatic
threshold-selection schemes based on the functional
approximation of the histogram. The first method is
based on minimising the sum of square errors. Though
this method is computationally simpler, it can be biased,
because the reduction in the square error is achieved by
many terms in the sum [11]. This led us to come up with
a better method based on minimising the variance. We
also show here that this minimum variance method is
equivalent to the optimum threshold value of a bimodal
histogram, that is, the sum of two Gaussian distributions,
Experimental results, for the suggested threshold schemes
are presented. To better judge these schemes, we have
defined a performance criteria, and have compared the
performance of our methods with two other methods
from the literature, namely the entropy method and the
moment-based method. We have chosen the entropy
method because it has been used as a benchmark in the
literature, and the moment-based method because it is a
more recent approach to the problem.

2 Approximating the histogram

2.1 The optimisation problem

If we assume that the image to be thresholded has two
major brightness regions, and, further, that these bright-
ness regions have a known probability distribution,
Gaussian, for example, then the image can be optimally
thresholded [12]. However, in many real-world images
this assumption is unrealistic. What is required is an
algorithm that can elegantly threshold images with arbit-
rary grey-level distributions, We present two algorithms
which accomplish this. Further, we show that our algo-
rithms select the optimal threshold [12], if the grey-ievel
probability distribution is Gaussian.

Let the pixels in an image be represented by L + 1
grey levels, [0, 1, 2, ..., L]. Let h; denote the number of
pixels with grey level j. Forming a histogram H(x) of the
image results in an ordered set of discrete values, hy, h,,
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this document.
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<+, By. Our aim is to approximate the set of discrete
values by a bi-level function G(x), such that the hj,j=0,
1,2,..., L can be replaced by 95,7 =0,1,2,..., L, where
V;Stgi=H,and V,>1, g; = H,. The partition point
t, where the approximation jumps from H, to H,, pro-
vides us with a good threshold value. Thus, all the pixels
less than or equal to ¢ are mapped to one grey value,
while those above t are mapped to another grey value.
For example, consider the histogram shown in Fig. 1.

350r

2001
>
%
c
@
g
£

1008

0 : - -
0 64 128 192 255
grey value
Fig. 1 An actual histogram and its bilevel approximation

All the pixels less than or equal to the transition point are mapped o one grey
value, while those greater than the transition point are mapped (o another grey
value

The histogram has been approximated by a bilevel func-
tion, with a transition point at ¢ = 141, which is selected
as the threshold value. Such a bilevel approximation can
be done recursively, using the histogram values on either
side of the transition point ¢, which will result in a multi-
level approximation of the histogram, as shown in Figs. 2
and 3,
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Fig. 2  The histogram and its multilevel approximation
In order to approximate the histogram with a bilevel
function, we need an error function, minimising which
will yield the transition point ¢. In this paper, we suggest
two such error functions: one that minimises the sum of
square errors and another that minimises the variance,
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As will be shown in Section 2.2, since there is no clogeq
form solution for t, given these particular error functions,
we have to resort to other methods to determine ¢, We
directly search for ¢ since the search space is small.
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Fig. 3 The histogram with even more levels of approximation

The error function E(f) is defined either as the sum of
square errors

L
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N, is the total number of pixels with grey values less than
or equal to t, and N, is the total number of pixels with
grey values greater than ¢. Since ¢ can take on only a
small range of values, we use direct search to find the
value of ¢ that minimises the error functions. In Section 3
we show that, on average, the threshold value determined
by minimising eqn. 2 gives better results compared to the
threshold value determined by minimising eqn. 1, with
only a slight increase in computational cost.

2.2 Theory
Given the error functions defined by eqns. 1 and 2, we
attempt to obtain a closed form solution for the value of

the threshold ¢. The derivations are given in the following
Sections.

2.2.1 Minimising the sum of square errors: We seek to
minimise the sum of Square errors between the grey
values and the mean value, in the two regions, ie. find
min {E(2)} = min {E,(t) + E,(t)}, where

E\t) = Lr(x = mO)*px)N dx
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and

L
Ey(t) = _{ (x — my(0))’ PN dx

and p(x), the p.d.f is defined as
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To find the threshold ¢ that minimises E(t), we differen-
tiate E(t) with respect to t and set the result to 0,
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The second and fourth term (and similarly the seventh
and ninth terms) reduce to zero
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Thus the dependency of m,(t) and m,(t) on t is effectively
removed and
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t is the fixed point of the mapping that can be found by
successive approximation.

222 Minimising the variance: To minimise the
variance of grey levels of the two regions separated by

the cut-off threshold ¢, we minimise E(f) = E,(¢) + E,(t),
where
(g < Jo.05 = my(@)plx) dx
! {5 p(x) dx
and
Ez(t) = .H‘ (x _ mz(t))zp(x) dx

§¢ plx) ax

where m,(t) and m,(¢) are defined as earlier.
Differentiating E() with respect to ¢, and setting the
result to 0, we get
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Using the results from Section 2.2.1, we get
P = (t — my(8)*p(t)

and
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Thus, ¢ is the fixed point of the mapping that can be
found by successive approximation. Comparing this to
the Gaussian model [12]

z P
t='u1+”2+ = ln(—z)
2 Hi— H2 P,

we observe that the a priori probabilities P, and P, are
absorbed in the terms s7 and s? under the constraint
< my(t) <my(t) < pp. Thus if P, =P, and s¥t)=
s3(t), we have

[C(t — my(8))* — Csilr)

t

' = my(t) + my(t) it
2 2

This shows that, in the ideal case, we have a t value
identical to the one obtained under the optimal threshold
of the Gaussian PDF model.

3 Experimental results

Very few papers [13], among the many published on
thresholding, discuss quantitative measures for the ‘good-
ness’ of a threshold, because the segmentation of an
image is rather subjective. We propose a simple goodness
criteria to compare our schemes with the entropy-based
method and the moment-based method. We also show
that our thresholding schemes work well for a particular
class of images, for which histograms do not exhibit a
perceivable bimodal characteristic. For a particular
image, if we know the correctly segmented regions a
priori, we can determine a goodness measure as

G =% x 100
ny
where n, is the number of correctly thresholded pixels,
and n, is the total number of pixels in the image. We now

present the results of three experiments that we con-
ducted to test our algorithms.

3.1 Experiment 1

The first experiment was done on the images of a rec-
tangle whose segmented regions were known a priori. The
experiment was done to obtain quantitative measures of
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performances, to compare our schemes with the twg
other thresholding techiques. A number of images of a
rectangle were generated (See Figs. 4-7, 12). These images
had pixel correlations ranging from 0.10 to 0.90 for both
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Fig. 4 The original image with a correlation of 0.30 Jor background
and foreground regions

Fig. &
thresholded at 140 (entropy method)

Image with correlation of 0.30 between neighbouring pixels,

the foreground and background regions. The threshold
values for these images were then computed using Kapur
et al.s’ [5] entropy algorithm, Pun’s [6] moment preserv-
ing algorithm and our methods based on functional
approximation. These threshold values and goodness
measures for this experiment are shown in Table 1.

As stated earlier, a number of threshold schemes can
give good results for bimodal histograms. However, for
histograms that are not clearly bimodal, proper thresh-
olding can be rather difficult. Fig. 8 shows the histogram
for the image of the rectangle with a correlation of 0.80.
Its histogram is bimodal. In such cases, the four thresh-

IEE Proc,-Vis. Image Signal Process., Vol. 142, No. 5, October 1995



olding schemes give nearly equal performances, measured
by our goodness measure, as defined above. However, the
histogram for the rectangular image with correlation 0.30
is not bimodal, as shown in Fig. 9. For such images, both
the entropy approach and the moment based approach
perform poorly compared to our schemes, both of which
yield a goodness measure of over 90.

Fig. 6 Image with correlation of 0.30 between neigbouring pixels,
thresholded at 180 (moment based method)

Fig. 7
thresholded at 200 (sum of square-error method)

Image with correlation of 0.30 between neighbouring pixels,

Table 1 also shows that, on average, the performance
of the sum of square-errors method, and the variance-
based method of threshold determination by functional
approximation, are better than the entropy approach and
the moment-based approach. In the cases where the other
methods do give better performances, they do so by only
a small margin,

3.2 Experiment 2
To judge the performance of our schemes on real world

images, the second experiment was done on the ‘Lenna’
image and an aerial image. Histograms are shown in
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Fig. 8  The histogram of the image of a rectangle whose pixel corre-
lation is 0.80
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Fig. 8  The histogram of the image of a rectangle whose pixel corre-
lation is 0.30

Table 1

Img. correlation 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Threshold goodness 140 138 140 117 106 95 89 92 83
(Kapur et al.) 35,58 16.06 31.09 4339 6050 6964 7414 8254 7176

Threshold goodness 176 205 180 162 142 143 147 145 148
(Pun) 4850 30.31 7854 87.08 96.62 9373 8367 9020 76.86

Sum of squars-error-method 187 208 200 192 182 175 173 173 171
goodness 5316 31.93 9060 91658 9372 9110 7990 88.16 84.43

Variance-method 254 264 254 189 147 114 101 103 92
goodness 79.77 73.82 9419 89.68 9459 9609 8960 9596 83.69

IEE Proc.-Vis. Image Signal Process., Vol. 142, No. 5, October 1995

275

|




Figs. 10 and 11; original images in Figs. 13 and 18; and
thresholding results in Figs. 14-17 and 19-22. Threshold
values resulting from the use of the different methods are
shown in Table 2.

Table 2
Thresholds Rectangle Lenna Aerial
Entropy (Kapur et al.) 95 169 117
Moment preserving 143 171 97
Sum of square errors 175 161 80
Variance method 114 170 104
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Fig. 10 . The histogram of the 'Lenna’ image
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Fig. 11 The histogram of the 'Aerial’ image

In the case of bimodal images like the ‘Lenna’ image,
many methods should give good results. As the Table
indicates, the threshold values for such an image are close
to each other. The results of thresholding of the ‘Lenna’
image are shown in Figs. 14-17. But for a large spike in
the histogram for the ‘aerial’ image (Fig. 11), the distribu-
tion of grey values is not bimodal. In such cases, each of
the four different schemes give wisely differing threshold
values, Since the ‘goodness’ measure cannot be obtained
for these images, they have been reproduced for visual
inspection in Figs, 19-22.
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3.3 Experiment 3

In the third experiment, we show the result of multileve]
thresholding using our variance minimisation scheme,
The extension from the bilevel case is straightforward,

Fig. 12 Image with correlation of 0.30 between neighbouring pixels,
thresholded at 254 (variance method)

"
A

Fig. 13  Original ‘Lenna’ image

The image histogram is first approximated by a bi-level
function, The parts of the histogram to the left and right
of the threshold value t are then considered separately,
and each in turn is further approximated by a bilevel
function. When done recursively, the result is a multilevel
approximation which provides multiple threshold values.
Flgs. 2 and 3 show examples of a histogram approx-
imated to multiple levels. Fig. 23 shows the ‘Lenna’ image

approximated to four levels and Fig. 24 the approx-
imated histogram.

4 Conclusions

In this paper, we have proposed two automatic threshpld
determination schemes that are based on approximating
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Fig. 14

Fig. 15

Fig. 16

‘Lenna’ image thresholded at 169 (entropy method)

‘Lenna’ image thresholded at 171 (moment based method)

‘Lenna’ image thresholded at 170 (variance method)

Fig.17 ‘Lenna’ image thresholded at

method)

Fig. 19  Aerial image threshold

ed at 97 (moment based m

ethod)




3

the image histogram. The first one minimises the sum of
square errors, while the second minimises the variance.
We have also proposed a "goodness’ measure to quantify
the performance of different thresholding algorithms, and
shown that for image histograms, that do not exhibit
bimodal tendencies, our schemes perform better than the
entropy-based approach and the moment-based
approach. For histograms that are bimodal, the per-
formance of our schemes is comparable to the other two
approaches. While the sum of square-errors method gives
a good threshold value, the variance method on average
gives better results at a slightly higher computational
expense. These schemes can serve as viable alternatives to
other automatic thresholding schemes.

.o.’! s,
A

Fig. 22 Aerial image thresholded at 80 (sum of squares method)

¥ KB X
AL b "
Fig. 20  Aerial image thresholded at 117 (entropy method)

Fig. 23  Multilevel thresholding at 78, 170 and 241
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Fig. 24 Histogram and its approximation for the ‘Lenna’ image

Fig. 2t Aerial image thresholded at 104 (variance method)
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