Čo vnímame klasicky?

- 3D scénu reflexne
- Ako to vieme popísať? Ako:
 - $\circ 2D$ signál
 - Stereoskopický 2x2D signál (pre každé oko zvlášt obraz)
 - Máme normálny papier
 - Obrazy zmixované cez seba -> stereogram!
 - Máme špeciálne okuliare/premietačku
- Pasívne okuliare
 - o Červené/zelené sklíčko (anaglyf)
 - Kruhovo polarizované okuliare (každé sklíčko opačným smerom) / špeciálna premietačka
- Aktívne okuliare
 - 3SD aktívne okuliare (s batériou) a LCD displejmi, ktoré synchronizovane púšťajú obraz raz pre jedno a raz pre druhé oko

 Prenos zvyčajne SBS (side-by-side) - dva obrázky vedľa seba, je na zariadení, ako ich bude renderovať

Čo je stereogram? Príklad (typ stereogramu náhodné body):

+ príklad že existujú aj podobné videá <mark>[10_snowman]</mark>

Stereogram2 – typ stereogramu (stereogram typu **pole objektov**)

3D obrázky (aj videá) – pre každé oko je zdroj zvlášť (side by side)

[https://www.youtube.com/watch?v=zBa-bCxsZDk]

Anaglyfy a matlab

openExample('vision/CreateA3DStereoDisplayExample')	
<pre>load('webcamsSceneReconstruction.mat') I1 = imread('sceneReconstructionLeft.jpg'); I2 = imread('sceneReconstructionRight.jpg'); [J1, J2] = rectifyStereoImages(I1, I2, stereoParams); A = stereoAnaglyph(J1, J2); figure; imshow(A);</pre>	
VR virtuálna realita:	Pseudo orthogr ᅌ Exa 👌 🛃 🏲 🏦 🕰 😋 🗳 🖉 🔹 🗎 📸 🕨 =
<pre>myworld = vrworld('vrpend.wrl') open(myworld) view(myworld)</pre>	
Rendering-> Stereo 3D -> Anaglyph	Total Social Statement of the Statement
V prehliadači: view(myworld,'-web')	
	WEF O Pseudo orthographic view T=0.00 Examine Pos:[-180.00 100.00 180.00] Dir.[0.66 -0.36 -0.66] Examine

-

Grafy a anaglyfy Napr. animované: https://www.mathworks.com/matlabcentral/fileexchange/31133-plot3anianaglvph Použitie: plot3AniAnaglyphDemos(0) Skonštruovanie vlastného grafu (anaglyf) [2013] 01_graph_ana.m [X,Y,Z] = peaks(50);% Create some dummy data. % You can change this to suit yourself. parallaxAngle = 0.5 ; cameraAnchor = $[\max(X(:)) \max(Y(:)) \min(Z(:))];$ leftImage = figure; surf(X,Y,Z,'FaceColor',[0.8 0.8 0.8]) % Create the surface figure. axis vis3d : % Lock the aspect ration for rotation. camtarget(gca,[cameraAnchor]) % Point the camera at the anchor point. view((-45 - parallaxAngle),30); % Rotate the figre to the correct angle. title ('Plot Title', 'FontWeight', 'Bold', 'FontSize', 11) % Add labels... xlabel ('X Axis Label', 'FontWeight', 'Bold', 'FontSize',11) ylabel ('Y Axis Label', 'FontWeight', 'Bold', 'FontSize', 11) zlabel ('Z Axis Label', 'FontWeight', 'Bold', 'FontSize',11) grid on ; % Switch on the figure grid, and set(gca,'GridLineStyle','-') % set the grid to solid lines. rightImage = figure; surf(X,Y,Z, 'FaceColor',[0.8 0.8 0.8]) % Create the surface figure. axis vis3d ; % Lock the aspect ration for rotation. camtarget(gca,[cameraAnchor]) % Point the camera at the anchor point. view((-45 + parallaxAngle),30); % Rotate the figre to the correct angle. title ('Plot Title', 'FontWeight', 'Bold', 'FontSize', 11) % Add labels... xlabel ('X Axis Label', 'FontWeight', 'Bold', 'FontSize',11) ylabel ('Y Axis Label', 'FontWeight', 'Bold', 'FontSize', 11) zlabel ('Z Axis Label', 'FontWeight', 'Bold', 'FontSize',11) grid on ; % Switch on the figure grid, and set(gca, 'GridLineStyle', '-') % set the grid to solid lines. print(leftImage ,'-dtiffn','-painters', 'Left_Eye.tif') print(rightImage, '-dtiffn', '-painters', 'Right Eye.tif') leftEyeImage = imread('Left Eye.tif') ; % Load the left eye image. rightEyeImage = imread('Right Eye.tif'); % Load the right eye image. leftEyeImage(:,:,2:3) = 0 ; % Removes green and blue from the left eye image. rightEyeImage(:,:,1) = 0 ; % Removes red from the right eye image. anaqlyph = leftEyeImage + rightEyeImage ; % Combines the two to produce the finished anaqlyph. imshow(anaglyph, 'border', 'tight'); % Show the anaglyph image with no padding. print(gcf,'-dtiffn','-painters','Anaglyph.tif') % Save the anaglyph image.

Skonštruovanie vlastného 3D SBS grafu 02_graph_sbs.m

```
outImgName=' my3D HiDpiColor.png';
[X,Y,Z] = peaks(50);
                             % Create some dummy data.
                             % You can change this to suit vourself.
parallaxAngle = 0.5 ;
cameraAnchor = [\max(X(:)) \max(Y(:)) \min(Z(:))];
leftImage = subplot(1,2,1)
 surf(X,Y,Z) % Create the surface figure.
                                % Lock the aspect ration for rotation.
 axis vis3d :
 camtarget(gca,[cameraAnchor]) % Point the camera at the anchor point.
view((-45 - parallaxAngle),30); % Rotate the figre to the correct angle.
title ('Plot Title', 'FontWeight', 'Bold', 'FontSize', 11) % Add labels...
xlabel ('X Axis Label', 'FontWeight', 'Bold', 'FontSize',11)
ylabel ('Y Axis Label', 'FontWeight', 'Bold', 'FontSize',11)
zlabel ('Z Axis Label', 'FontWeight', 'Bold', 'FontSize',11)
grid on ;
                                % Switch on the figure grid, and
set(gca,'GridLineStyle','-') % set the grid to solid lines.
rightImage = subplot(1,2,2)
surf(X,Y,Z) % Create the surface figure.
axis vis3d ;
                                % Lock the aspect ration for rotation.
camtarget(gca,[cameraAnchor]) % Point the camera at the anchor point.
view((-45 + parallaxAngle),30); % Rotate the figre to the correct angle.
title ('Plot Title', 'FontWeight', 'Bold', 'FontSize', 11) % Add labels...
xlabel ('X Axis Label', 'FontWeight', 'Bold', 'FontSize',11)
ylabel ('Y Axis Label', 'FontWeight', 'Bold', 'FontSize', 11)
zlabel ('Z Axis Label', 'FontWeight', 'Bold', 'FontSize',11)
grid on :
                                % Switch on the figure grid, and
set(gca,'GridLineStyle','-') % set the grid to solid lines.
print(gcf,outImgName,'-dpng','-r600');
```


Druhy obrazov

- Farebnosť / hĺbka informácie
 - Farebné -> v akom "farebnom priestore"
 - 256 farieb
 - 256*256*256 farebné (24 bitov)
 - \circ Šedotónové
 - 8 bitov (bežne), 12 bitov (medicínske obrazy)
 - o Čierno/biele (1 bitová farebná hĺbka)
 - o Z/bez ditheringu (čo to je? Pamätáte na ADSS1)
- Z hľadiska tvorby obrazu sa rozlišuje (prienik s počítačovou grafikou)
 - o zosnímané (cez nejaký snímač)
 - o vytvorené / upravené (v počítači)
 - Raster/vektor
 - 2D/3D
 - 2D grafika
 - $\circ\,$ vrstvy ich priehľadnosť, alfa kanál
 - 3D grafika
 - $\circ\,$ scény, osvetlenie, priehľadnosť materiály,
 - 3D obraz rezy mozgu, tkanív, …

Snímač obrazu – fotoaparát

- Obrazové senzory
 - o v súčasnosti najma CMOS (Complementary Metal Oxid Seminductor)
 - začína medzi fotografmi trend "nostalgického návratu k CCD" lebo to sníma "ináč"
 - pred senzorom sú farebné filtre, CFA (color filter array) najpoužívanejšie Bayerove: chýbajúce farebné vzorky sú interpolované (algoritmy sú individuálne)
 - každý bod má informáciu iba o jednej farbe, zelených je 50%, červenýcha modrých po 25%

 Pred Bayerovými filttrami bývajú ešte OLPF (Opticel Low-pass filter) – ktoré robia rozostrenie každého detailu, ktorý je jemnejší ako rozlíšenie senzora (obmedzuje moaré)

 $\circ~$ Iné druhy filtrov (pozn. Foveon sníma v každom bode všetky 3 farby) $\downarrow~$

Kodak RGBW	FUjifilme EXR	Fujifilm X-trans	Foveon
			Blue sensor Green sensor Red sensor

Čo je moiré/moaré?

- Rušivý efekt, ktorý vzniká keď pravidelný obrazec bodov snímača (alebo bodov displeja) interferuje s nejakým pravidelným vzorom na obrázku
- Rôzne druhy moaré
 - Napr. paralelné čiary, keď sa otočia o malý uhol a preložia s neotočenými, podobne mriežky, kružnice, ...

- Bayerove filtre ho tvoria
- Foveon ho netvorí

RAW format

- Formát údajov priamo po nasnímaní z jednotlivých buniek
- Napr Canon má vlastné formáty CRW (<u>http://xyrion.org/ciff/</u>) a CR2 (<u>http://lclevy.free.fr/cr2/</u>)
- Jednotlivé R, G, B zložky z Bayerových filtrov sú prenášané ako 12/14 bitové ...
- Pri "vyvolávaní z RAW" sa údaje prevedú do štandardnej RGB formy a napr. JPEG formátu

Čo je HDR (High Dynamic range)?

- Viaceré fotky fotené pri rôznych expozíciách sú zlúčené do jednej plnšie detaily aj v tmavšej aj vo svetlejšej časti
- Napr. Iphone používa v HDR móde 3 fotky, ktoré skladá do jednej. Príklad HDR:

- HDR sa dá realizovať aj manuálne, napr. pomocou GIMPu
 - o <u>https://www.youtube.com/watch?v=tHzlmK-S8vo</u>
 - o https://www.gimp.org/tutorials/Blending Exposures/

Málo dramatická obloha?

Kombinovanie so sebou samým napr. Pomocou "blending" v GIMPe

Čo je to -2.0 EV, +2.0 EV?

Potrebujeme pojem expozícia:

- Čo je expozícia: celkové množstvo svetla, ktoré dopadne na fotografické médium
 - o svetlo sa na film/čip dostáva cez objektív (optická sústava, ktorá prispôsobuje tok svetla)
- Čo na ňu vplýva?
 - Clona (apertúra) mechanické zariadenie, ktoré obmedzuje množstvo svetla prechádzajúce cez objektív. Najbežnejšia je "irisová clona" (viď obr.). Celkové množstvo dopadajúceho svetla nezávisí len od veľkosti otvoru v clone, ale aj od ohniskovej vzdialenosti objektívu. Na clone sa udáva tzv. clonové číslo (nazývané aj "f-číslo) "f-číslo"=f/D. Kde f=ohnisková vzdialenosť, D=priemer otvoru clony. Oboje spravidla v mm. Napr. ak f=100mm a D=25mm, potom 100/25=4, t.j. f-číslo = "f4" resp. "f/4" (niekedy sa f číslo udáva aj v tvare "f/N")

- clona ľudského oka (zrenica) má clonové číslo f/8.3 (zrenica zúžená na 2mm) až f/2.1 (zrenica otvorená na 8mm). Z toho akú ma ľudské oko ohniskovú vzdialenosť?
- expozičná doba čas, po ktorý sa dostáva na médium svetlo, regulujeme pomocou závierky (mechanickej, elektronickej), dôležitý pojem je "rýchlosť závierky". Napr. 1/2000s.
- ISO citlivosť citlivosť média (čím väčšia citlivosť tým stačí menej fotónov aby dopadlo, pri elektronických prístrojoch sa realizuje zosilnením)

EV=exposition value = miera množstva svetla na scéne. 0EV=(ISO 100,f/1.0, exp. doba1s) = množstvo svetla ako je v noci v okolí miest

Čo je hĺbka ostrosti? Viete s ňou pracovať? Fotili ste niekedy Makro? Pozerali do stereolupy? Čo je to bokeh? Čo sú polarizačné filter? Čo sú prechodové filter?

Čo je to EXIF?

- Špecifikácia pre formát metaúdajov ktoré sa vkladajú do súborov, ktoré vytvárajú digitálne fotoaparáty
- Podporuje ho JPEG, TIFF, ale nepodporuje ho JPEG2000 a PNG

Apple iPhone 6 iPhone 6 back came	era 4.15m	AW m f/2.2	
ISO 250 4mm	0 ev	<i>f</i> /2.2	1/25
O _▼ × ∘	0 0 0 0		P F
EXIF Info	\$		\$.
Version Name:	IMG_0157		
Date:	16:38,15. 16:38,15.	11.15 nov	
Camera Make:	Apple		
Camera Model:	iPhone 6		
Serial Number:			
Lens:	iPhone 6 b 4.15mm f/	ack camera 2.2	3
ISO:	ISO 250		
Focal Length:	4,2mm		
Focal Length (35mm):	29,0mm		
Exposure Bias:	0 ev		
Aperture:	f/2.2		
Shutter Speed:	1/25		
Flash:	Flash did r	not fire, aut	o mode

las

n Exposure Com:	
White Balance:	Auto White Balance
xposure Program:	Normal Program
Shooting Mode:	
Metering Mode:	Pattern
Exposure Mode:	Auto Exposure
Focus Mode:	
Focus Distance:	
File Size:	1,26 MB
Pixel Size:	3264 × 2448 (8,0 MP)
Original Pixel Size:	3264 × 2448 (8,0 MP)
Profile Name:	sRGB IEC61966-2.1
Aspect Ratio:	4:3
Orientation:	Landscape
Depth:	8

Optické ilúzie

Doverujete vlastnému vizuálnemu systému?

Pozrite si <mark>[03_obrazove_iluzie_video]</mark>

MATLAB a základná práca s obrazom

Skladanie farieb ...

- Spôsob skladania farieb závisí od prezentačného média (a sprievodných fyzikálnych vlastností)
- Ak používame monitor/displej (tvorí svetelné lúče s danou farbou) aditívne skladanie, lúče sa sčítavajú, farba je čoraz svetlejšia
 - o preto displeje majú zvyčajne farby RGB (red, green, blue)= primárne farby
 - o žltá = červená+ zelená, magenta=červená + modrá, cyan= ... (sekundárne farby)

- Ak používame papier, miešaním sa farby odčítavajú (odráža sa čoraz menej a menej) subtraktívne skladanie
 - o preto tlačiarne zvyčajne používajú farby CMYK (cyan, magenta, yellow, black)
 - žltá*magenta=(červená OR zelená) AND (červená OR modrá) = červená

Farebné modely – kolorimetria [http://sccg.sk/~cernekova/Pocitacove_videnie.pdf]

Kolorimetria sa zaoberá numerickým opisom ľudského vnímania farieb **Farebný model** opisuje základné farby a schémy miešania týchto farieb do výslednej farby. **Gamut** = dosiahnuteľná obasť farieb vo farebom priestore daným zariadením <u>CIE 1931 (Commission International de L'Eclairage)</u> Koncent farby - 2. čestic lyminer sig (iso) a shrometicity (shrometicity)

CIE RGB

CIE RGB-> CIE XYZ	CIE XYZ-> CIE RGB
$\begin{bmatrix} X\\Y\\Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13}\\b_{21} & b_{22} & b_{23}\\b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20\\0.17697 & 0.81240 & 0.01063\\0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix}$	$\begin{bmatrix} R \\ G \\ B \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 0.41847 & -0.15866 & -0.082835 \\ -0.091169 & 0.25243 & 0.015708 \\ 0.00092090 & -0.0025498 & 0.17860 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$

- -

Rôzne iné farebné modely a ich gamut:

Ďalšie farebné modely

CMYK Cyan Magenta Yellow blacK	kódovanie pre subtraktívny farebný systém,	CMYK(0,1) RGB (0255)
	ktorého základnými farbami sú doplnkové farby k	R = 255(1 - C)(1 - K)
	červenej, zelenej a morej - azúrová, purpurová a	G = 255(1 - M)(1 - K)
	žltá.	B = 255(1 - Y)(1 - K)
		červená: (0,1,1,0)->(255,0,0)
СМҮ	Ako CMYK, ale bez čiernej	$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$
HSV (Hue Saturation Value)	hue udáva odtieň, saturation sýtosť a value jas. Čiernu dostaneme, ak je jas nastavený na 0, bielu ak je jas na maxime (nezávisí od sýtosti).	Chroma Value
YUV (YCbCr) (YPbPr)	kódovanie, ktoré slúži na zachovanie čiernobielej zložky televízneho vysielania. Y je jas (svietivosť, luminance) a predstavuje čiernobielu zložku, U a V sú farebné zložky (farebnosť, chrominance).	V +.4 +.3 +.2 +.1 4321 1 2 3 4

_ _

Redukcia farieb

```
clear all;
close all;
I = imread('wpeppers.jpg');
imshow(I);
```

```
[X_no_dither,map] = rgb2ind(I,8, 'nodither');
figure, imshow(X_no_dither,map);
```

```
[X_dither,map]=rgb2ind(I,8,'dither');
figure, imshow(X_dither,map);
```


Farebné Histogramy

Histogram je funkcia, ktorá pre každú úroveň jasu udáva počet pixelov v obraze, ktoré majú túto úroveň.

Histogram a jeho ekvalizácia

Cieľom je nájsť jasovú transformáciu T hodnôt *p* na *q*: q = T(p) aby výsledý histogram G(q) bol rovnomerný pre celý výstupný rozsah jasov $< q_0, q_k >$. Ak počet bodov obrazu je N^2 potom platí:

$$q = T(p) = \frac{q_k - q_0}{N^2} \sum_{i=p_0}^{r} H(i) + q_0$$

(vidíme, že prepočítavame "cez distribučnú funkciu")

Ekvalizácia v matlabe

clear all; close all; X=load('woman.mat'); A=uint8(X.X); subplot(2,2,1),imshow(A); subplot(2,2,2),imhist(A); B=histeq(A) subplot(2,2,3),imshow(B); subplot(2,2,4),imhist(B);

Normalizácia histogramu (zmena rozsahu jasu)

$$q = T(p) = (p - p_0)\frac{q_k - q_0}{p_k - p_0} + q_0$$

(iba uniformne rozťahujeme/zťahujeme, neprepočitavame cez distribučný funckiu)

Bodové jasové transformácie

- Sčítanie a odčítanie obrazov: $c(x, y) = a(x, y) \pm b(x, y)$,
- Násobenie a delenie obrazov
- Násobenie a delenie obrazu konštantou
- Logaritmický operátor: $g(x, y) = \frac{255}{\log(1+R)} \log(1 + f(x, y))$, R je max. jas vstupného obrazu. Používa sa na úpravu podexponovaného obrazu
- Exponenciálny operátor: používa sa na úpravu preexponovaného obrazu
- Konvolúcia: $g(x, y) = \sum_{m} \sum_{n} h(x m, y n) f(m, n)$, kde $(m, n) \in O$
 - h(x,y)- konvolučná maska, konvolučné jadro
 - o podľa toho aká maska sa zvolí, dosiahneme napr.
 - vyhladzovanie potláčanie šumu, napr. priemerovací filter $h = \frac{1}{10} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 - ostrenie detekcia hrán a čiar, napr. Laplaceov operátor $h = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
- Nelineárne metódy

Matlab - šedotónový obraz - kontrast a jeho zmena

Matlab konvolúcia

<pre>I = imread('wpeppers.jpg'); h = fspecial('unsharp'); I2 = imfilter(I,h); imshow(I) figure, imshow(I2) h = -0.1667 -0.6667 -0.1667 -0.6667 4.3333 -0.6667 -0.1667 -0.6667 -0.1667</pre>	
<pre>I = imread('wpeppers.jpg'); h = ones(10,10)/100; I2 = imfilter(I,h); imshow(I) figure, imshow(I2)</pre>	

(vľavo origialy, vpravo prefiltrované)

Ostrenie a "unsharp"

- Prečo sme mali pri ostrení : "h = fspecial('unsharp');" ?
- Aj kedysi sa pri "ostrení" fotiek z negatívov ostrilo pomocou rozmazaného (unsharp) obrazu
- Postup:
 - od obrazu odčítame jeho rozmazanú verziu -> dostaneme rozdiely, ktoré vlastne chceme v pôvodnom obraze zvýrazniť
 - o rozdiely pričítame k pôvodnému obrazu (a tým rozdiely zvýrazníme)
 - $\circ~$ Ako to spraviť pomocou konvolúcie?

• Originál =
$$O = O * \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• rozmazaný obraz $B = O * \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} 1/9$

- Rozdielový obraz = O B
- Zostrený obraz=

$$O + (O - B) = 2O - B = 2O * \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} - O * \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} 1/9 = O * \begin{pmatrix} 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} 1/9 = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 17 & -1 \\ -1 & -1 & -1 \end{pmatrix} 1/9$$