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Recommendation G.728

CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY
CODE EXCITED LINEAR PREDICTION

(Geneva, 1992)

Annex G
16 kbit/sfixed point specification
(Geneva, 1994)

(Thisannex forms an integra part of this Recommendation)

G.1 Introduction

The purpose of this annex is to describe in sufficient detail how ITU-T Recommendation G.728 for 16 kbit/s LD-CELP
can be implemented on a fixed point arithmetic device. A fixed point implementation based on this description should be
capable of fully interworking with a floating point version of Recommendation G.728 and producing an output signal of
equivaent quality, whether that signal is speech or an in-band data signal. By fixed point arithmetic we mean a 16-bit
word size. Most 16-bit devices have other word sizes as well. For example, the product of two 16-bit words is a 32-hbit
word. So, the product register of such adeviceistypically 32 bits wide. The accumulator stores the sum of products, so it
must also be at least 32 hits wide. Thus, although we are describing a “16-bit implementation,” some interna state
variables have other than 16-bit precision.

It is the intent of this annex to provide a complete bit exact description of all operations necessary for the implementation
of Recommendation G.728 on a 16-hit fixed point digital signal processor having a 32-bit product register and at least
two 32-bit (or greater) accumulators. In numerous instances throughout the annex there are possible alternative methods
to perform operations such that the exact same result is obtained. In such instances the alternate method may be
substituted. However, if the exact same result is not obtained for all possible inputs, then the substitution should not be
made. Since the number of possible aternativesis very large, no attempt has been made to point out the great majority of
them.

This annex is divided into seven subclauses. The first subclause is an introduction and contains further information about
fixed point signal processing and the conventions used throughout this annex. The second subclause contains information
about algorithmic changes which were made especialy for fixed point implementation of Recommendation G.728. The
third subclause gives fixed point pseudo-code for the remaining modules of the coder. The fourth subclause provides an
overall summary of state variable representations for the fixed point coder. The last subclauses contain tables pertaining
to the backward vector gain adapter.

G.1.1  General philosophy

This annex is an annex to ITU-T Recommendation G.728. It is therefore unnecessary to repeat al of the details and
discussions in that Recommendation. Where it is helpful, some of the details will be reviewed. In that Recommendation,
complete computational details were given for a floating point implementation. Where the computational details are
unchanged except for the substitution of fixed point arithmetic operations for floating point, no computational details will
be given in this annex.
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The greatest changes from the floating point version of the coder to this one are:
1) theintroduction of different types of arithmetic operations and precisions for the state variables;
2) achanged, but mathematically equivalent method for the backward vector gain adaptation; and

3) the introduction of variable precision in the calculation of the predictor coefficients in the Levinson-
Durbin recursion.

The remainder of this first subclause of the annex gives details on the different numerical representations and fixed point
arithmetic. The second subclause of the annex gives details on the two major algorithmic changes mentioned above, the
backward vector gain adaptation and the Levinson-Durbin recursion. The third subclause of the annex gives pseudo-code
for the hybrid windowing module, block 49 in Recommendation G.728. The algorithm for this module is unchanged, but
the implementation is complicated by the use of fixed point arithmetic. The pseudo-code for this module is a good
example of the types of changes which must be made throughout the other modules in the coder. The fourth subclause of
the annex contains a table corresponding to Table 2/G.728 giving the numerical representation of all state variables used
in the encoder and decoder.

For consistency in this annex, al representations assume that 2's complement arithmetic is used throughout. Alternative
representations which can produce mathematically equivalent results can be used to implement the coder.

G.1.2  Numerical representation

The basic unit of a 16-bit fixed point implementation is the 16-bit word. When representing pure integers, it has a range
of —32768 to +32767. The representation for 1 is given by 0000000000000001 and the representation for —32768 is given
by 1000000000000000. Here the right-most bit represents the least significant bit (LSB) and the left-most bit represents
the most significant bit (MSB). For 2's complement arithmetic, if the MSB is O, the number is positive, while if the MSB
is 1, the number is negative. We can number the bits from 0 to 15, with bit O being the LSB and bit 15 the MSB.

To represent numbers with fractional parts, a decimal point must be assigned between two of the bits. For example, to
represent numbers between —1.0 and +1.0, we would assign the decimal point between bits 14 and 15. This particular
format is called Q15 because there are 15 bits to the right of the decimal point. Qn format is defined to have n bits to the
right of the decimal point. Purely integer data would be represented by QO format.

Some data requires a greater precision than representation by a 16-bit word. To accommodate such data, double precision
format is defined. This means that there are 32 bits of information. Whereas 16-bit words are capabl e of representing data
with a precision of 1 in 215, 32-bit registers such as the product register or the accumulator on most commercially
available DSP chips can represent data with a precision of 1 in 231, Such words are referred to as double precision. Once
again, there must be a decimal point to indicate the dynamic range of the word as well.

Some data has a greater range than can be represented by any fixed 16-bit format. Perhaps 16 bits of precision is
adequate, but the scaling of the value must be dynamic. Such data can be represented by single precision floating point.
This means that the data is represented by two words. The first 16-bit word contains a number whose magnitude falls
between 16384 and 32767. Thisis the mantissa of the value and we say that its value is represented in normalized format
because of the range of its magnitude. If the value is positive, then bit 14 of the mantissais a 1. The second word contains
the number of left shifts (NLS) used to put the value in normalized format. Thus, the second word specifies the Q format
of the mantissa. If thisformat is used for asingle value, it is called scalar floating point.

It is also possible to represent an array of n values with n+ 1 words using block floating point. Using this format, the
largest magnitude value in the array would be represented the same way as just described for scalar floating point. All
other values in the array would share the same NLS. Their mantissas would not necessarily be in normalized format. An
extension of this representation is segmented block floating point. In this case an array of mn values is represented by
m(n + 1) words. The array is subdivided into m sub-arrays of size n and each sub-array is represented in block floating
point with n words representing the magnitudes and 1 word representing the NLS.
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The other type of representation used is double precision floating point. In thisinstance double precision integers are used
for the mantissas and one single precision word is used to represent the NLS. In summary, the different types of
representations used are single precision fixed point, double precision fixed point for the accumulators and product
register, scalar single precision floating point, and single and double precision block floating point formats.

G.1.3  Arithmetic operations

In multiplying two 16-bit words, the result is a 32-bit number. This is the reason that product registers are customarily
double precision. Since product registers can be added the accumulators, the accumulators must also be at least 32 bits
wide. For a sum of products type of computation, asin convolution or FIR filtering, the accumulator could overflow. This
problem of overflow is addressed differently in commercially available DSP chips.

In 1R filtering, the sum of products, or the result of the multiply-accumulate operations, becomes part of the memory for
the filter and is used again the next time the filtering operation is performed. Specifically, the 16 bits in the high word of
the output will be used as an input to the multiplier. An overflow which converts alarge positive value to a large negative
value or vice versa is known as wrap around and will cause a big difference in the output of the filter. To guard against
this, we use saturation mode arithmetic for all IR filters and anywhere else that a sum of products will later be used as an
input for a multiplier. Saturation mode means that if the high word becomes greater than 32767 or less than —32768, it
will be clipped to these values in order to prevent wrap around.

G.1.3.1 Shifting and rounding

In discussing arithmetic operations, we begin with shifting and rounding. If we multiply a Qn format value by a Qm
format value number, the result in the product register will have double precision format Q(n + m). If the result needs to
be stored or added at a different precision, then the result must be shifted and/or rounded to the correct precision.

Two types of shifts are possible, left shifts and right shifts. On commercialy available DSP chips, shifts can usually be
done in the accumulator. Also, it is usually possible to shift the result in a product register before adding it to or storing it
in the accumulator. As their names imply, in a left shift, the bits are moved to the left and in aright shift they are moved
to the right. If we shift a value k bits to the right, then the least significant k bits of the old value are lost. If we shift a
value to the left, we need to check for possible overflows. The expression to indicate a right shift of k bits for a variable
TMPis

TMP = TMP >> k
and the expression for aleft shift of k bitsis given by
TMP = TMP << k

In some cases k is a variable and can even be negative. In those instances when k is negative, a left shift by k bits is
defined to be a right shift by —k bits. Similarly, a right shift by k bits when k is negative is equivalent to a left shift by —
k bits. Where the possibility of k being negative exists, the pseudo-code includes a test for this possibility followed by the
reverse shift by —k bits if k is negative. While negative shifts have been defined above mathematically, they cannot be
implemented on most devices or in some computer languages.

It is worth noting one particular anomaly of right shifts for 2's complement arithmetic. Suppose that the value to be right
shifted is 3 and the shift is 1 bit. The 16-bit representation of 3 is given by 0000000000000011. If we right shift this by
one bit, we get 0000000000000001=1. If the value to be right shifted is -3, then the representation is
11111111121111101. After a right shift, the result is 1111111111111110 =—-2. The first item to note is that for right
shifting, the sign hit is extended. The anomaly is that the magnitude of the answers for these two examples do not agree.
If asign-magnitude representation were used, they would agree. Implementers should be aware of this difference.
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In simulating the coder an additional, more subtle difference was found which is compiler dependent. It is possible that in
the algorithm an instruction is generated to right shift a word by greater than the size of that word. For example, it could
be to shift a 16-bit word by 18 hits. If the operation were implemented by doing 18 individual 1-bit right shifts, the result
of such an operation should be 0 or —1, depending on the sign of the original data. However, it was found that some
compilers consider an 18-hit shift to be an illega instruction and produce spurious results. Implementers should verify
how their target hardware and language compiler would handle such a case.

Rounding is the process of converting from double precision to single precision in the accumulator. Usually rounding is
performed immediately preceding the storage of the value to a 16-bit word in memory. An accumulator consists of a high
word and a low word (and possibly the additional bits to the left of the high word). Usually, either the high word or the
low word can be stored to memory, or both on two successive instructions. If we consider the accumulator to have a
decimal point placed between the high word and the low word, then rounding is the operation of converting the
accumulator to the integer value closest to the non-integer value stored in the origina two words. The usual convention
for 2's complement numbers is to test the MSB in the low word. If it is 1, add 1 to the value in the high word. Then zero
out the low word. For example, if the value in the accumulator is 1.5, the high word is given by 0000000000000001 and
the low word is given by 1000000000000000. Since the MSB of the low word is 1, add 1 to the high word and zero out
the low word. The result is 0000000000000010 for the high word, or 2. If the value in the accumulator is —1.5, then the
high word is given by 1111111111111110 and the low word is given by 1000000000000000. Since the MSB of the low
word is 1, add 1 to the high word and then zero the low word. The result is 1111111111111111 =-1. Thisis similar to
the anomaly for right shifts.

In performing the rounding function it is necessary to be aware of the possibility of overflow. For example, if the high
word value is 0111111111111111 (= 32767) and the low word has a 1 in the MSB, then following the usua convention
results in an overflow. Depending on the processor, the output word could become 1000000000000000 which represents
—32768. In such a case, the usua convention is not followed. Instead the value is saturated to avoid an unrepresentable
value.

In the pseudo-code examples, the rounding function described above is represented as RND (.).

Pseudo-codefor VSCALE

One new module of pseudo-code which needs to be introduced at this point performs vector scaling for block floating
point representation. The name given to this module is VSCALE. Its purpose is to scale a vector so that the largest
magnitude of its elements is left justified as desired, i.e. represented in normalized format. This module can be used for
vectors where the first element is known to have the largest element or for vectors where the location of the largest
element is unknown. The inputs to VSCALE are IN, the input vector to be scaled, LEN, the length of the input vector,
SLEN, the search length for finding the maximum value, and MLS, the maximum number of left shifts permitted. The
outputs of VSCALE are OUT, the output vector, and NL S, the number of left shifts used for scaling the input vector. The
input and output vectors are assumed to be of the same type and can be either single precision block floating point (16-bit
integers) or double precision block floating point (32-bit integers). In the case of single precision vectors, MLS = 14,
while for double precision vectors, MLS = 30. Sometimes, it is desired to use less than 16 bits or 32 hits to represent a
variable. For example, there are several variables which are specified to have either 14 or 15 bits of precision. In these
cases, set MLS = 12 or 13, respectively. Because of this possibility, there is also a possibility that rather than left shiftsto
normalize the variable, it will require right shifts. In those instances, the NLS value returned will be negative. For
example, if NLS = -1 isreturned, this indicates that a right shift of 1 bit was necessary. The module assumes that there is
an accumulator (AAQ) available for shifting and that it has at least 32 bits of precision. If the maximum element is known
to bethefirst, set SLEN = 1. Otherwise, set SLEN = LEN and the entire vector will be searched for the maximum value.
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The following code follows the convention that data is represented in 2's complement form. It treats the cases where

largest magnitude values are positive or negative, separately.

SUBROUTINE VSCALE(IN, LEN, SLEN, MLS, OUT, NLS)

AAO0=1IN()
AAL1=IN(1)
If SLEN =1, skip the next 3 lines
For 1 =2, 3, ..., SLEN, do the next two lines
If IN(1) > AAO, set AAO = IN(I)
If IN(I) < AAL, set AAL=IN(I)

If AAO=0and AA1 =0, do the next 3 lines
Forl=1,2, .., LEN,setOUT(I) =0
NLS=MLS+1
Exit this subroutine

NLS=0

If AAO <0 or AAL1 <-AADQ, then do the following indented lines

MAX| = -2MLS
MINI = 2* MAXI

| Find maximum positive value of input
| Find maximum negative value of input

| Case1: zero input vector

| Let 0 have one more bit of
| left shift than 1

| Initialize NLS

| Determine Case 2 or Case 3

| Case 2, negativeislarger
| Mantissalower bound after shift

If AA1 < MINI, then do the following doubly indented lines to find the number of right shifts needed and then scale the

elements

LOOP1R: AA1=AA1>>1
NLS=NLS-1
If AA1 <MINI, goto LOOPIR
Forl=1,2, 3, ..., LEN, do the next line
OUT(1) = IN(l) >> -NLS
Exit this subroutine

LOOPIL: If AA1<MAXI, goto SCALE1
AAl1=AAl<<1
NLS=NLS+1
Go to LOOP1L

SCALEL: Forl =1,2,3, ..., LEN, do the next line
OUT(l) =IN(I) << NLS
Exit this subroutine

Else, do the following indented lines
MINI| = 2MLS

MAXI =MINI -1
MAXI = MAXI + MINI

| Negative NLS = => right shifts

| Find number of left shifts

| Case 3, positive number islarger

| Mantissalower bound after shift
| 2* MIN will overflow if MLS = 30
| Mantissa upper bound

If AAO > MAXI, then do the following doubly indented lines to find the number of right shifts needed and then scale the

elements

LOOP2R: AAO0O=AA0>>1
NLS=NLS-1
If AAO > MAXI, goto LOOP2R
Forl=1,2,3, ..., LEN, do the next line
OUT(l) =IN(I) >>-NLS
Exit this subroutine

LOOP2L: If AAO3 MINI, goto SCALE2
AAO=AAO0<<1
NLS=NLS+1
Go to LOOP2L

SCALE2: Forl =1, 2,3, ..., LEN, do the next line
OUT(l) = IN(I) <<NLS
Exit this subroutine

Recommendation G.728 — Annex G (11/94) 5



In some instances we find that it is not actually desired to re-scale the data, but merely to find the number of left shifts
required if one wanted to re-scale the data. The following routine uses the same inputs as VSCALE but provides only
NLS as an output. It omits the scaling of the input vector, but is otherwise the same as VSCALE.

SUBROUTINE FINDNLS(IN, SLEN, MLS, NLS)
AAO0=1IN() | Find maximum positive value of input
AAL1=IN(2) | Find maximum negative value of input
If SLEN =1, skip the next 3 lines
For1 =2, 3, ..., SLEN, do the next two lines
If IN(1) > AAO, set AAO = IN(I)
If IN() <AA1L, set AAL=IN(I)

| Case1: zero input vector
If AAO=0and AA1 =0, do the next 2 lines

NLS=MLS+1 | Let O have one more bit of
Exit this subroutine | left shift than 1
NLS=0 | Initialize NLS

| Determine Case 2 or Case 3

If AAO <0 or AAL <-AAQO, then do the following indented lines
| Case?2, negativeislarger
MAX| = 2MLS | Mantissalower bound after shift
MINI =2* MAXI
If AAL <MINI, then do the following doubly indented lines to find the number of right shifts needed

LOOPIR: AAL1=AAl1>>1
NLS=NLS-1 | Negative NLS = => right shifts
If AA1 <MINI, goto LOOPIR
Exit this subroutine

LOOPIL: If AA1 <MAXI, exit this subroutine | Find NLS
AAl=AAl<<1
NLS=NLS+1
Go to LOOP1L

Else, do the following indented lines
| Case 3, positive number islarger

MINI = 2MLS | Mantissalower bound after shift
MAXI =MINI -1 | 2* MIN will overflow if MLS = 30
MAXI = MAXI + MINI | Mantissa upper bound

If AAO > MAXI, then do the following doubly indented lines to find the number of right shifts needed

LOOP2R: AAO0O=AA0>>1
NLS=NLS-1
If AAO > MAXI, goto LOOP2R
Exit this subroutine

LOOP2L: If AAO3 MINI, exit this subroutine | Find NLS
AA0=AAO0<<1
NLS=NLS+1
Go to LOOP2L

G.1.3.2 Multiplication

Multiplication of two fixed point numbers results in a 32-bit number, usualy stored in a product register in aDSP. If the
two fixed point numbers were in Qn and Qm formats, the result in the product register is in Q(n + m) format. Before
adding it to an accumulator, it may be necessary to shift the result as explained in the preceding subclause.
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Multiplication of two floating point words is accomplished by fixed point multiplication of the two mantissas and
addition of the two NLS. As described above, the product is a 32-bit word with Q(n + m) format. If the product must be
converted back to floating point, then the product may need to be renormalized. For example, in the case of multiplying
two positive floating point words, the product must have a 1 in either bit 30 or 29. Renormalization is necessary if bit 30
is 0. This means one additional left shift is necessary. After the left shift, the product is represented in Q(n+ m+ 1)
format. If the product is to be stored in scalar floating point, it must be rounded before storing. If the product needs to be
in block floating point, the entire array needs to be renormalized, according to which value is now the largest in
magnitude.

Although double precision variables are used in parts of this coder, there are no double precision multiplications. In some
instances, double precision variables are multiplied, but in those cases, only the 16 most significant bits are used. These
instances are noted in the pseudo-code.

G.1.3.3 Addition

Addition of fixed point numbers requires that both be stored in the same Q format. Generally, the value which is stored
with the greater dynamic range determines which value must be changed to the appropriate Q format. For example, if
adding values stored in Q9 and Q11 formats, the value in the Q11 format must be right shifted by 2 bits before adding it
to the value stored in Q9 format.

Addition of scalar floating point numbersis similar. The two values must both have the same NLS. Again, the value with
the higher NL S needs to be right shifted to match the other value'sNLS. If the sum requires 17 bits for representation, the
sum in the accumulator can be right shifted by 1 bit and then rounded back to 16 bits and the new NLS will be one less
than the previous format. As an example, consider the case of adding two values whose NLS are 5 and 7. The value
whose NLS is 7 must be right shifted by 2 bits before it can be added to the other value. If both values have the same
sign, the sum of the two mantissas may have a magnitude greater than 32767. In this case, the value in the accumulator
must be shifted by one bit and then rounded. The NLS of the sum will be 4. If the two values are of opposite sign, the
result in the accumulator may have a mantissa whose magnitude is less than 16384. In this case, the result should be
renormalized by left shifting until the magnitude is greater than or equal to 16384 and the NLS increased by the number
of left shifts. For our example with the NLS being 5 and 7 initialy, the final NLS can be no greater than 6 and no less
than 4.

Addition of block floating point numbers is complicated by the fact that the constraints are based on the largest magnitude
value. In this caseg, if two vectors have NLS of 5 and 7, the one with NLS of 7 must be right shifted by 2 bits. Each of the
pairsis summed. The largest of the resulting sums will determine whether renormalization is necessary.

G.1.3.4 Division

Division is not used nearly as frequently as addition or multiplication. The only divisions used are scalar floating point
divisions. The numerator and denominator are represented in normalized format, asis the quotient. The quotient’ sNLS s
calculated by subtracting the NLS of the denominator from that of the numerator and adding 14. To explain this 14,
consider the case where the numerator was dightly larger than the denominator and both had NL S equal 0. The quotient
would have NLS equal 14 in this case and would be properly normalized. If the numerator’s mantissa is less than the
denominator’s, then the numerator should be left shifted by 1 bit and its NLS increased by 1 in order to compute the NLS
of the quotient. This guarantees that the mantissa of the quotient will bein normalized format.

Division occurs within Durbin’s recursion, a routine requiring full 16-bit precision in the result. Therefore, approximate
division routines are not sufficient. The mantissa of the result must have full 16-bit precision including rounding of the
17-bit result. Pseudo-code for such adivision is given below.

If either the numerator or denominator is not initially stored in scalar floating point, it must first be converted to this
format. The function FLOAT(.) is used in the pseudo-code to represent such conversions. The argument could be either
single precision or double precision fixed point.
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Pseudo-code for Floating Point Division

Thisroutine is used for computing floating point division on a 16-bit fixed point device. It is assumed that there is at |east
one 32-bit accumulator available. All inputs and outputs are 16-bit words.

Input: NUM, NUMNLS, DEN, DENNLS
Output: QUO, QUONLS
Function: Compute the quotient. NUM and NUMNLS are the mantissa and Q format for the numerator. DEN and

DENNLS are the mantissa and Q format for the denominator. QUO and QUONLS are the mantissa and Q format for the
quotient. All are assumed to bein normalized format. There is no test for DEN being zero —it is assumed that it is not zero.

SUBROUTINE DIVIDE(NUM, MUMNLS, DEN, DENNLS, QUO, QUONLYS)

SIGN =1 | First determinethe
P=NUM * DEN | sign bit of the
If P<0,set SIGN =-1 | quotient
QUONLS=NUMNLS—-DENNLS+ 14 | Next compute QUONLS
A0 =|NUM | | AOis 32-bit accumulator
| |NUM J|isinlower 16 bits
Al=|DEN | | Al can be 16 or 32-hit register
| if 32-bit, | DEN | islower
| 16 bits

If AO <A1, dothe next 2 lines
QUONLS=QUONLS+1
A0O=A0<<1

QUO=0 | Quotient initialization
1=0 | Loop counter initialization

LOOP: QUO=QUO<<1 | Long division loop
If AO3 A1, dothe next 2 lines
QUO=QUO+1
A0O=A0-A1
A0=A0<<1
I=1+1
If | <15, GO TO LOOP

If A03 Al, set QUO=QUO +1 | Take care of rounding

If SIGN <0, set QUO =—QUO | Take care of thesign

G.2 Algorithmic changes

G.21 Changesin the backward vector gain adapter (block 20)

NOTE — This subclause refers to 3.8/G.728. Readers should familiarize themselves with 3.8/G.728 before attempting to
understand this subclause. The changes outlined in this subclause pertain to the once-per-vector computations for the backward vector
gain adpater. Wherever possible, the same notation used in Recommendation G.728 has been used here.

In this subclause we briefly describe the once-per-vector backward vector gain adapter operations in Recommen-
dation G.728 as implemented in floating point. We then describe a mathematically equivalent method which can be more
easily and accurately implemented on fixed point processors. Tables for values required by this alternate method are
given in the addendum to this annex.

The floating point operations can be described briefly as follows. The internal state variable array GSTATE, represented
by the symbol d, contains the previous 10 offset-removed logarithmic gains. The symbol d(n) denotes the offset-removed
logarithmic gain for vector n. The log-gain predictor output [the predicted version of d(n)] for vector nisgiven by:

10

&) = - aa;d(n-i) (G-1)

i=1
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As shown in Figure 6/G.728, before converting a(n) to the linear domain, a gain offset of 32 dB must be added and the
result checked to make sure that:

0£ &R +32£ 60 (G-2)

Equivalently, we can say the allowed range for a(n) is:

-2 £ §R) £ 28 (G-3)

The estimated gain in the linear domain is given by:

s(n) = 10((ﬂﬁ)+32)/20 (G-4)

The value of s(n) isfirst used to normalize the excitation VQ target vector. After the codebook search is completed, s(n)
is then used to scale the best codevector selected. If we assume that gain codebook index i and shape codebook index j
were chosen for vector n, then the excitation vector e(n) is given by:

en) = s(n) gy (G-5)

where yj is the j-th shape codevector and g; is the i-th gain level in the gain level in the gain codebook. The excitation
vector e(n) is then used to compute d(n). First, we compute the squared RMS value of e(n) [or the “power” of e(n)],
which isgiven by:

Qo cn

Ple(n)] = 1e%(n) (G-6)

gl

k

For any given vector X, we use the symbol P[x] to represent the power of x, which is defined as the energy of x divided by
the vector dimension of x. Before converting P[e(n)] to the dB value in the logarithmic domain, we clip P[e(n)] to 1 if it
islessthan 1. Thus, the allowed range for P[e(n)] is:

Ple(n)]® 1 (G-7)

This is to avoid overflow in the logarithm conversion or exceedingly small dB value. Note that although this range-
limiting action is not explicitly shown in Figure 6/G.728, it isimplemented in the “ pseudo-code” in 5.7/G.728. The offset-
removed logarithmic gain (in dB) for vector nisthen obtained as:

d(n) = 10log;o Ple(n)] - 32 (G-8)

Note that equation (G-7) implies that:

dn) 3 - 32 (G-9)

Next, the d(n) calculated in equation (G-8) is used to predict the following excitation gains and to update the log-gain
predictor coefficients. This completes our brief review of the floating point operation for the backward vector gain
adapter.
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We now describe the mathematically equivalent method for fixed point implementation. Let yjk be the k-th element of the
j-th codevector in the shape codebook. Then, combining egquations (G-5) and (G-6), we have:

(&)

Ple(n) = & &(n) gi)/jkgz (G-10)
=1

5
=35 Z(n) gi2 E(ézlyjzki (G-ll)

= s?(n) ¢° Py;] (G-12)

Substituting equation (G-12) for equation (G-8) yields:

d(n) = 20logyps(n) — 32 + 201logyg | gi | + 101log;q Plyjl (G-13)

Now, using equation (G-4), we can express d(n) as.

d(n) = d(n) + 201logyg|gi| + logig PLyi] (G-14)

In other words, d(n) is simply the predicted log-gain a(n) plus two “correction terms”:
1) 20logio|gj| the dB value of the best gain level selected from the gain codebook; and

2) 10logio Plyj], the dB value of the power of the best shape codevector selected from the shape codebook.
(In a sensg, this is like a conventiona predictive coder for the gain, but operated in the logarithmic
domain.)

Figure G.1 shows the block schematic of this mathematically equivalent method. Since there are only 4 possible | g; | and
128 possible P[y;] values, we can precompute their dB values and store them in two log-gain tables (blocks 93 and 94 in
Figure G.1).

The delay units 91 and 92 make available the best gain and shape codebook indices chosen in the excitation codebook
search of the previous vector. These two indices are used to look up the values of 20 logio | g; | and 10 logio Ply;] from
the log-gain tables in blocks 93 and 94. The 1-sample delay unit 95 holds the previous predicted (and possubly range
limited) log-gain d(n 1). The adder 96 adds the outputs of blocks 93, 94, and 95 to produce an unclipped d(n—1)
according to equation (G-14). Then, the limiter 97 enforces the inequality in equation (G-9) by clipping the output of the
adder 96 at —32 dB if it isless than —32 dB.

The ouput of the limiter 97 is mathematically equivalent to the output of the adder 42 in Figure 6/G.728. Therefore,
blocks 43 through 46 in Figure G.1 are identica to their counterparts in Figure 6/G.728. The operation of the log-gain
limiter 98 is similar to the limiter 47 in Figure 6/G.728, except that the allowed range has been shifted down by 32 dB.
The adder 99 adds the log-gain offset value of 32 dB, stored in block 41, to the output of the log-gain limiter 98. The
resulting log-gain value is then converted to the linear domain by the inverse logarithm calculator 48, which isidentical to
its counterparts in Figure 6/G.728. This completes the descriptions of the mathematically equivalent method for fixed
point implementation.

The equivalent method shown in Figure G.1 has two important advantages over the original method in Figure 6/G.728.

a) It eliminates the need to calculate the logarithm function (block 40 in Figure 6/G.728). In DSP implemen-
tations, the logarithm function is usually calculated using a power series expansion and typically takes a
large number of instruction cycles to calculate. Thus, replacing the logarithm calculation by a table look-
up could mean a considerable saving in DSP cycles. Also, the table entries can be pre-computed to the
maximum desired.
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b) Itislikely to give more accurate numerical results than the original method when afixed point processor is
used. Due to backward adaptation, there is a feedback loop in the gain adaptation process. In
Figure 6/G.728, this feedback loop is very long. It goes from the inverse logarithm calculator 48 to the
gain scaing unit 21 (in Figure 2/G.728), and then back to blocks 67, 39, 40 and 42 through 48. The more
computations done in this loop, the more likely that numerical errors due to finite precision may
accumulate in the feedback loop. This is especialy true if the fixed point processor does not aways
achieve the maximum possible accuracy for the logarithm function. In contrast, the feedback loop in
Figure G.1 is as tight as it can be. Note that the gain scaling unit, the energy and power calculation
for e(n), the logarithm cal culator, and even the adder for restoring the log-gain offset are now all out of the
feedback loop. Except for blocks 43 through 46 that are common in both methods, the feedback loop only
involves two limiters and two additions, which can be implemented with very high precision by fixed point
processors.

As aresult of this change, interoperability between fixed and floating point implementations of Recommendation G.728
is enhanced. The main disadvantage of this new method is that it requires additional words of ROM memory. There are
128 shape vectors and 4 possible gain vectors. The additional memory required is 128 + 4 = 132 words. Thisis only a
very small fraction of the ROM space already needed in Recommendation G.728.

This new method has changed the input to the backward vector gain adapter (blocks 20 and 30) from e(n) to the gain and
shape codebook indices i and j. To reflect this fact, Figures 1/G.728 through 3/G.728 should have been re-drawn here so
that the backward vector gain adapter gets its input from the excitation VQ codebook block. However, such modified
figures are omitted here, since the necessary changeistrivial and it should be very clear from the description above.

G.22 Changesin the Levinson-Durbin recursion modules

This subclause is about changes in the Levinson-Durbin recursion modules used in Recommendation G.728. There are
three such modules, designated as blocks 37, 44 and 50, and used for the perceptual weighting filter, the log-gain linear
predictor, and the synthesis filter, respectively. Readers should refer to 5.5/G.728 and 5.6/G.728 for more details. In this
section we will use the pseudo-code for block 50 from 5.6/G.728 as an example and show how it must be modified for
fixed point implementation. Similar changes need to be made for blocks 37 (perceptual weighting filter) and 44 (log-gain
predictor). We begin with alisting of the floating point pseudo-code.

If RTMP (LPC +1) =0, goto LABEL | Skipif zero

|
If RTMP(L) £ 0, go to LABEL | Skip if zero signal

RC1 = -RTMP(2)/RTMP(1)

ATMP(1) =1 |

ATMP(2) = RC1 | First-order predictor
ALPHATMP =RTMP(1) + RTMP(2) * RC1 |

If ALPHATMP £ O, go to LABEL | Abort if ill-conditioned

For MINC =2, 3,4, ..., LPC, do the following
SUM =0.
ForiP=1, 2, 3, ..., MINC, do the next 2 lines
N1=MINC-IP+2
SUM = SUM + RTMP(N1) * ATMP(IP)

I
RC = -SUM/ALPHATMP | Reflection coefficient

MH =MINC/2 + 1 |
ForIP=2, 3,4, ..., MH, do the next 4 lines
IB=MINC-IP+2
AT = ATMP(IP) + RC* ATMP(IB) |
ATMP(IB) = ATMP(IB) + RC* ATMP(IP) | Update predictor coefficient
ATMP(IP) = AT |
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ATMP(MINC + 1) =RC |

ALPHATMP=ALPHATMP + RC * SUM | Prediction residua energy

If ALPHATMP £ O, go to LABEL | Abort if ill-conditioned
Repeat the above for the next MINC

| Recursion completed normally
Exit this program | if execution proceedsto here

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 51, do not update the synthesis filter
coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

The best way to begin is to consider the floating point variables referred to in this pseudo-code. These are RC, RC1,
RTMP, SUM, ALPHATMP and ATMP. (The other variables in the code, MINC, IP, IB and N1 are al indices which are
integers.)

RC refers to the reflection coefficients, which are computed as an intermediate variable in this module. Reflection
coefficients have the property that they have a magnitude which is aways less than unity for a stable LPC filter. As such,
RC can be represented with a Q15 format, meaning that one bit is used for the sign bit and the other 15 bits are used to
represent the fractional part of the value.

We note that at each iteration we compute RC, use it for that iteration, and then never use it again. The only exception is
that for the synthesis filter LPC analysis in the decoder. RC1 is saved for later use in the postfilter. In order to save
memory, only the value of RC1 is saved above. All other values of RC are written to a single location which is
overwritten at the next iteration. This represents a change from the original floating point pseudo-code, but has no effect
on the output results and can be used for floating point implementations as well.

RTMP refers to the autocorrelation function values. These values have a tremendous dynamic range. By necessity RTMP
must be kept in block floating point. This means that all values are normalized by the same power of 2. Theoreticaly,
RTMP(1) should have the largest value. We also know that it must be positive. The representation used will be such that
the largest magnitude of RTMP is between 0.5 and 1. This being the case, all of RTMP can be represented in Q15 format.
All of RTMP is represented in block floating point in hybrid window, but only the mantissas are needed in Durbin’s
recursion.

One other note concerns RTMP(LPC + 1). As indicated on the first line, if this variable has a value of zero, this module
should be terminated. If RTMP(LPC + 1) is represented by a 16-bit integer, this condition is much more likely to happen
than for the case when the same RTMP (LPC + 1) is represented by a 32-bit floating point number in a floating point
implementation. This causes interoperability problems. In computing RTMP(LPC + 1) in the previous module (hybrid
window, block 49), the value is accumulated in the accumulator, which is at least 32 bits in al fixed point DSPs. It is
proposed that this 32-bit value of the accumulator when the computation is completed be tested to check for zero. By
making this change, premature termination (and thus interoperability problems) can be avoided. In the new code a logical
variable named ILLCOND is tested to see whether it is true or false. Its value depends on the results of the test of RTMP
(LPC + 1) in the hybrid window module. We later use ILLCOND as an output variable for this block to indicate whether
the output values should be used or ignored.

For the postfilter, there is the possibility that the ill-conditioning occurred after the 10th iteration. In that case, a new set
of short-term adaptive postfilter prediction coefficients have been determined and are valid, but the 50th order synthesis
filter coefficients are not valid. A second logical variable, ILLCONDP indicates the status of the postfilter coefficients.

SUM and ALPHATMP are the next two variables. Both are values which are accumulated, but are never multiplied. The
value held in an accumulator is 32 bits. However, these two variables are divided to compute RC. Both SUM and
ALPHATMP are converted to 16-bit fixed point for the division. The result of the division is represented in Q15 fixed
point format and assigned to RC. The variable SUM does not appear explicitly in the fixed point pseudo-code. In 32-hit
format, it is the accumulator AAO and in 16-bit format it is the variable SIGN.
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Note that ALPHATMP is naturally a 32-bit number which is accumulated in an accumulator. However, in actual DSP
implementations, it is necessary to save ALPHATMP in memory for the next higher order of recursion, because the
accumulator will be needed for other computations before ALPHATMP is updated again. Therefore, some DSP cycles
can be saved if we save and load only the rounded 16-bit high word of ALPHATMP rather than the entire 32-bit word. In
practice, it is found that saving only the high word of ALPHATMP after each update did not degrade the coder’s
performance. Therefore, only the high word of ALPHATMP is saved after each update of ALPHATMP. In order to make
clear when ALPHATMP is represented by 16 bits and when by 32, the name ALPHATMP is used in the pseudo-code
only when it is a 16-bit number. An accumulator is referenced when it is a 32-bit number.

The remaining vector of variables is ATMP which represents the predictor coefficients. In al simulations, the maximum
value observed for ATMP has been less than 4. This would suggest using Q13 format throughout. However, the same
simulations aso showed that using Q13 format within Durbin did not provide sufficient interoperability with floating
point implementations. To achieve greater interoperability between fixed and floating point implementations, it was found
to be better to use Q15 format except when this caused overflows.

On a DSP chip, the results of the computation of ATMP(IB) or ATMP(IP) are initialy in the accumulator. The
accumulators of most 16-hit fixed point DSP chips are at least 32 bits wide. The values of ATMP(IB) and ATMP(IP)
must be rounded to 16-bit precision. In the fixed point code, it is important that the accumulator contains guard bits or
provides an overflow flag, so that when computing ATMP(IB) or ATMP(IP) if overflow occurs, it will be detected.

The following strategy for choosing the format of ATMP has been adopted. The iterations can be numbered according to
the value of MINC. We begin with MINC =2 and Q15 format for ATMP. If overflow never occurs, i.e. for al IP,
|ATMP(IP) | < 1, then the fina representation for ATMP is Q15. The other possible case in that an overflow occurs
during one of the iterations. Suppose that it is iteration K. In this case, al of the values of ATMP computed during
iterations K and K — 1 must be converted to Q14 format by right shifting. Iteration K is then restarted using Q14 format.
Subsequent iterations from K + 1 on are also computed using Q14 format. Overflows may also occur while using Q14
format. In that case, the same procedure is followed and the computation continues in Q13 format. Empiricaly it was
observed that such overflows never occurred in Q13 format. The reason for using the other formatsisthat if the overflows
are avoided, the result is more accurate. The final representation of ATMP before exiting this block is either Q13, Q14 or
Q15.

It was also observed that after the bandwidth expansion operations, the filter coefficients at the output of the bandwidth
expansion modules (blocks 38, 45, 51 and 85) are aways representable in Q14 format. It was further observed that
representation in Q15 format whenever possible did not improve cross-decoding SNR above that observed for using
Q14 format. Therefore, those three bandwidth expansion modules always convert their output coefficient arrays to Q14,
regardless of whether their input coefficient arrays (i.e. the Levinson-Durbin recursion modules output) are in Q13, Q14
or Q15. This means that when a Levinson-Durbin recursion module produces a Q13 or Q15 output coefficient array, it
must signal the corresponding bandwidth expansion module so that an additional shift can be performed to convert the
array to Q14. For this reason, in the fixed point Levinson-Durbin recursion module given below, we have added an
additional flag NLSATMP as one of the outputs of this module.

In the decoder the Levinson-Durbin recursion is interrupted after the 10th order prediction coefficients are derived. These
values are saved for the adaptive postfilter. Consequently, there are two possible starting conditions. In the ordinary case,
the recursion is begun with MINCO = 1. In the decoder, MINCO = 10 is another possibility. In the event of this latter case,
the values of NRS and ALPHATMP must be saved. Also we note that the value of NLSATMP must be saved until
ICOUNT = 3 when the bandwidth expansion module is executed.

Finally, we note that this routine uses three accumulators. The third accumulator, AA2, is used to hold the 17-bit
precision value of RC for updating the newest prediction coefficient.

14 Recommendation G.728 — Annex G (11/94)



The following pseudo-code describes the fixed point version of the Levinson-Durbin recursion modules.

If MINCO > 1, go to RECURSION
MINCO =1 | Initializations for
ILLCONDP = .FALSE. | decoder only

If ILLCOND =.TRUE., goto FAILED | Skipif RTMP(LPC + 1) is zero
If RTMP(1) £ 0, go to FAILED | Skip if zero signal
NRS=0 | Q15 format initially

DEN = RTMP(1) | Calculate first order predictor
NUM = RTMP(2)
If NUM <0, set NUM =-NUM

Call SIMPDIV(NUM, DEN, AAO) | |IRTMP(2) | /RTMP(1)

AAO=AA0<<15

RC1 = RND(AAO0)

If RTMP(2) >0, set RC1 =-RC1 | Add signinformation
RC=RC1 | First order predictor coefficient
ATMP(2) =RC1

AAO0 =RTMP(1) << 16 |
P=RTMP(2) * RC |
AA0O=AAQ0+(P<<1) |
ALPHATMP = RND(AAQ) | Save DSP accumulator high

| word to memory
RECURSION:

For MINC =MINCO + 1, MINCO + 2, ..., LPC, do the following indented lines
AA0=0
ForIP=2, 3, ..., MINC, do the next 3 lines
N1=MINC—-IP+2
P=RTMP(N1) * ATMP(IP)
AA0=AA0+P | 32 bitsfor SUM
AAO=AAO0<<1

AAO0=AAO0<<NRS
AA1=RTMP(MINC + 1) << 16
AAO0=AAO0+AAl |

SIGN = RND(AAQ) | Save high word sign
NUM =SIGN

If NUM <0, set NUM =-NUM

If NUM 3 ALPHATMP, go to FAILED |

Cal SIMPDIV(NUM, ALPHATMP, AAO) | Divideto get RC

AA2=AA0<< 15
RC = RND(AA?2)
If SIGN >0, set RC =-RC

AA1=ALPHATMP << 16
P=RC* SIGN
AA1=AAL+(P<<1)

If AAL£ 0, go to FAILED
ALPHATMP = RND(AA1)

MH =MINC/2 +1

| AA2 stores 17-bit RC

| Now update ALPHATMP

| Fractional part of MINC/2 truncated;
| MH = integer

| Begin to update predictor

| coefficients
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ForIP=2, 3, 4, ..., MH, do the following doubly indented lines

IB=MINC—IP+2
AAO0=ATMP(IP) << 16
P=RC* ATMP(IB)
AAO=AAD + (P << 1)

If AAO overflowed, then do the following triply indented lines

NRS=NRS+1

| Load AAO high word
| QI5RC,s0<<1

For LP=2,3, ..., MINC, set ATMP(LP) = ATMP(LP) >> 1

AA0=ATMP(IP) << 16

P=RC* ATMP(IB)

AA0=AAD0+(P<<1)
AA1=ATMP(IB) << 16

P=RC* ATMP(IP)
AAL=AAL+(P<<1)

| First re-scale ATMP
| Next re-calculate
| overflowed AAO

If AA1 overflowed, then do the following triply indented lines

NRS=NRS+1

For LP=2,3, ..., MINC, sst ATMP(LP) = ATMP(LP) >> 1

AAO0=ATMP(IP) << 16
P=RC* ATMP(IB)
AAO=AAQ0+(P<<1)
AA1=ATMP(IB) << 16
P=RC* ATMP(IP)
AA1=AAl+(P<<1)
ATMP(IP) = RND(AAQ)
ATMP(IB) = RND(AA1)

AAO0=AA2>>NRS

AAO = RND(AAD)
If SIGN >0, set AAO = —AAO
ATMP(MINC + 1) = AAO

Repeat the above indented lines for the next MINC

NLSATMP=15-NRS
If NLSATMP < 13, go to FAILED
Exit this program

FAILED: Set ILLCOND =.TRUE.

Thefollowing tablelists al variablesin the above pseudo-code with their representation format for easy reference.

16

If MINC £ 10, set ILLCONDP = .TRUE.

If program proceeds to here, ill-conditioning has happened. Then, skip block 51, do not update the synthesis filter

| First re-scale ATMP(IP)
| Next re-calculate AAO

|

| Next re-scale ATMP(IB)
| Next re-calculate

| overflowed AA1

| Update ATMP(MINC + 1)
| AA2 contains 17-bit RC

| Output inlow word of AAO

| Low word stored in ATMP

| Recursion completed normally
| if execution proceedsto here

coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)
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Variable Format Size Temp/perm Old/new
AAO, AAl, AA2 DP-integer 1 temp new
ALPHATMP SFL 1 temp old
ATMP Q13/Q14/Q15 51 perm old
IB integer 1 temp old
ILLCOND logical 1 perm new
ILLCONDP logical 1 perm new
IP integer 1 temp old
LP integer 1 temp new
MH integer 1 temp old
MINC integer 1 temp old
NLSATMP integer 1 temp new
NRS integer 1 temp new
NUM integer 1 temp new
RC Q15 1 temp new
RC1 Q15 1 temp new
RTMP Q15 51 perm old
SIGN integer 1 temp new
SFL 16-bit scalar floating point
DP-integer 32-hit register such as accumulator or product registers (AA1, AA2 & P)
Integer 16-bit integer
Q13/Q14/Q15 16-bit integer with one of these representations

The above code was written for block 50 and used variable names associated with block 50. However, it can be used for
blocks 37 and 44. The following table trandates the variable names which are specific for block 50 to those which are
specific for one of the other blocks.

Block 50 Block 37 Block 44
ATMP AWZTMP GPTMP
ILLCOND ILLCONDW ILLCONDG
NLSATMP NLSAWZTMP NLSGPTMP

RTMP R R

The above code uses a different and ssimpler division algorithm than that used throughout the rest of the algorithm. It is
referred to above as SIMPDIV. The pseudo-code for SIMPDIV is given below. The inputs are NUM and DEN, both
16-bit integers. The output is AAO with resultsin lower 17 bits.

Subroutine SIMPDIV (NUM, DEN, AAQ)
AA0=0
AA1=NUM
K=0
LOOP: AA0=AAO0<<1
AAl=AAl<<1
If AA13 DEN, then set AA1=AA1-DEN and AAO=AA0+1
K=K+1
If K <16, go to LOOP
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G.3

In this subclause pseudo-code for other modules of Recommendation G.728 is presented. The pseudo-code for the
Levinson-Durbin recursion was contained in the previous section, together with the algorithmic changes for the backward
vector gain adapter. For each module the floating point pseudo-code is presented first and is then followed by
commentary and the fixed point pseudo-code. The following table can be used as a reference for finding the pseudo-code

for a particular module of the coder.

The pseudo-codes for all blocks provide a bit-exact specification and are the ultimate definition of the fixed point G.728

Pseudo-code for other modules of Recommendation G.728

coder. Any deviation from these pseudo-codes may result in an incorrect simulation or implementation.

Fixed-point G.728 block number, description and pseudo-code name

Block Description Pseudo-Code

1 Input PCM format conversion Not needed
2 Vector buffer Not needed
3 Adapter for weighting filter Use block 45
4 Weighting filter Block 4

5-7 Switch for ZIR/memory update Not needed
8 Simulated decoder See detailed blocks below
9 Synthesisfilter for ZIR Blockzir

10 Weighting filter for ZIR Blockzir

9,10 Blocks 9 & 10 for memory update Block 9

11 VQ target vector computation Block 11

12 Impul se response vector calc. Block 12

13 Time-reversed convolution Block 13

14 Shape codevector convolution Block 14

15 Codebook energy table calc. Block 14

16 VQ target vector normalization Block 16

17 VQ search error calculator Block 17

18 Best codebook index selector Block 17

19 Excitation VQ codebook Block 19

20 Backward vector gain adapter See detailed blocks below

21 Gain scaling unit Block 19

22 Synthesisfilter Use block 9

23 Synthesis filter adapter See blocks 49-51

18
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Fixed-point G.728 block number, description and pseudo-code name (end)

Block Description Pseudo-Code
24 Codebook search module See blocks 12-18
28 Output PCM format conversion Not needed
29 Decoder excitation codebook Use block 19
30 Decoder backward gain adapter Same as block 20
31 Decoder gain scaling unit Use block 19
32 Decoder synthesisfilter Block 32
33 Decoder syn. filter adapter Same as block 23
34 Postfilter See blocks 71-77
35 Postfilter adapter See blocks 81-85
36 Hybrid window for W(z) Block 36
37 Durbin’srecursion for W(z) SeeG.2
38 W(2) coefficient calculator Block 38
43 Hybrid window for GP(z) Block 43
44 Durbin’srecursion for GP(2) See G.2
45 GP(z) bandwidth expansion Block 45
46 Log-gain linear predictor Block 46
48 Inverse logarithm cal culator Block 46
49 Hybrid window for A(z) Block 49
50 Durbin’srecursion for A(z) SeeG.2
51 A(2) coefficient calculator Block 51

71-77 Blocks inside postfilter Corresponding blocks

81-85 Blocksin postfilter adapter Corresponding blocks
91 Gain codebook index delay unit Not needed
92 Shape codebook index delay unit Not needed
93 Gain codebook log-gain table TableinG.5
94 Shape codebook log-gain table Tablein G.5
95 1-sample delay for log-gain Not needed
96 adder to update log-gain Block 46
97 Log-gain limiter at —32 dB Block 46
98 Log-gain limiter: —32 to 28 dB Block 46
99 Adder to restore gain offset Block 46
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G.31 Block 4 — Pseudo-code for weighting filter

Thisisthe floating point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.

For K=1,2, .., 1DIM, dothefollowing
SW(K) = S(K)

For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

SW(K) = SW(K) + WFIR(J) * AWZ(J + 1)
WFIR(J) = WFIR(J-1)

SW(K) = SW(K) + WFIR(L) * AWZ(2)
WFIR(1) = S(K)

For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

SW(K) = SW(K) = WIIR(J) * AWP(J + 1)
WIIR(J) = WIIR(-1)

SW(K) = SW(K) — WIIR(1) * AWP(2)
WIIR(1) = SW(K)

| All-zero part
| of thefilter

| Handlelast one
| differently
| All-pole part

| of thefilter

| Handle the last
| one differently

Repeat the above for the next K

For the fixed point version of this pseudo-code there are the NLS values associated with WFIR and WIIR. The
computation must be so that the input speech has the same NL S as WFIR and the result from this cal culation has the same
NLS as WIIR. In thisinstance, the NLS values for WIIR and WFIR are fixed at the same value as the input speech. AWZ

and AWP are Q14. The value for the input speech, NLSS, is 2. Different input formats (16-bit linear, mlaw, A-law, etc.)
are supposed to convert to the range of [-4096, +4095.75] represented in a Q2 format.

For K bit linear input, it is assumed that the data occupies the K least significant bits of a 16-bit word, K_BIT_SAMPLE.
The proper representation is given by:

NLS=15-K
S=K_BIT_SAMPLE << NLS
For 16-bit linear input signals (16_BIT_SAMPLE), aright shift of 1 bit isrequired:
S=16 BIT_SAMPLE>>1

For mlaw PCM (MULAW_SAMPLE), the largest magnitude sample value is 4015.5 and it is assumed that this would be
represented in Q1 format as 8031. To convert to Q2 format, aleft shift of 1 bit is needed:

S=MULAW_SAMPLE<<1
For A-law PCM (ALAW_SAMPLE), the largest magnitude sample is 2016, but some sample values have a fractional
part of 0.5. Consequently, 2016 would be represented as 4032 in a 16-bit word. To put this value in the proper range,
aleft shift of 2 bitsis needed:
S=ALAW SAMPLE << 2
Thisisthe fixed point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.
For K=1,2, .., 1DIM, dothefollowing
AAO = §(K)

AAO=AAO0<<14
For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

AAO0 = AAO0 + WFIR(J) * AWZ(J+1) | All-zero part
WFIR(J) =WFIR(J-1) | of thefilter
AAO0 = AAO0 + WFIR(1) * AWZ(2) | Handle the last
WFIR(1) = S(K) | one differently
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For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

AA0=AA0-WIIR(J) * AWP(J + 1) | All-pole part

WIR(@J) =WIIR(J-1) | of thefilter
AA0=AA0-WIIR(2) * AWP(2) | Handlethe last
AAO0=AA0>>14 | one differently
If AAO > 32767, set AAO = 32767 | Saturation mode for
If AAO <-32768, set AAO =-32768 | multiplier input later
WIIR(1) = AAO | 16-bit lower word saved
SW(K) =AAO0 | SWisQ2

Repeat the above for the next K

G.3.2 Blockzir — Pseudo-code for synthesis and perceptual weighting filters during zero-input response
computation

Thisisthe floating point pseudo-code for block 9 (the synthesisfilter) during zero-input response computation.

For K=1,2,..,IDIM, do the following

TEMP(K) =0.
For J=LPC,LPC-1, ..., 3, 2, do the next 2 lines
TEMP(K) = TEMP(K) — STATELPC(J) * A(J+ 1) | Multiply —add
STATELPC(J) = STATELPC(J-1) | Memory shift
TEMP(K) = TEMP(K) — STATELPC(1) * A(2) | Handlelast one
STATELPC(1) = TEMP(K) | differently

Repeat the above for the next K

This is the floating point pseudo-code for block 10 (the perceptua weighting filter) during zero-input response
computation.

For K=1,2, .., 1DIM, dothefollowing
TMP = TEMP(K)
For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) + ZIRWFIR(J) * AWZ(J + 1) | All-zero part
ZIRWFIR(J) = ZIRWFIR(J - 1) | of thefilter
TEMP(K) = TEMP(K) + ZIRWFIR(1) * AWZ(2) | Handle |ast one

ZIRWFIR(1) = TMP

For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) — ZIRWIIR(J) * AWP(J + 1) | All-pole part
ZIRWIIR(J) = ZIRWIIR(J - 1) | of the filter
ZIR(K) = TEMP(K) — ZIRWIIR(1) * AWP(2) | Handle |ast one

ZIRWIIR(L) = ZIR(K) | differently

Repeat the above for the next K
In the fixed point code, we note that STATELPC is segmented block floating point and has associated with it
NLSSTATE. Since there is zero-input, we do not need to match NLSSTATE with the NLS of the input. The A(),
AWZ(), and AWP() values are always represented in Q14 format.
Thisisthe fixed point pseudo-code for block 9 (the synthesis filter) during zero-input response computation.
NLSSTATE(11) = NLSSTATE(1)
For K=2 3,4, .., 10, do the next line | Find minimum NLSSTATE

If NLSSTATE(K) < NLSSTATE(11), set NLSSTATE(11) = NLSSTATE(K)
For K=1,2,..,1DIM, do the following

=1
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L=6-K

J=LPC

AA0=0

For LL =1, ..., L, dothe next 3lines
AAO = AAO— STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J—1)
J=J-1

NLS=NLSSTATE(l) — NLSSTATE(11)

AA1=AA0>>NLS

For | =2, ..., 10, do the next 8 lines

AA0=0

For LL=1,2, .., IDIM, dothenext 3lines
AA0=0-STATELPC(J) * A(J+1)
STATELPC(J) = STATELPC(J-1)
J=J-1

NLS=NLSSTATE(l) - NLSSTATE(11)

AA0=AA0>>NLS

AA1=AAl1+AA0

If K=1, goto SHIFT2

L=K-1

AA0=0

For LL =1, 2, ..., L, dothenext 3lines
AA0=AAQ0-STATELPC(J) * A(J+1)
STATELPC(J) = STATELPC(J-1)
J=J-1

AA1=AAl1+AA0

SHIFT2: AA1=AA1>>14

If AA1> 32767, set AAL = 32767
If AA1 <-32768, set AA1 =-32768

STATELPC(1) = AA1

IR = NLSSTATE(11) - 2
IfIR>0, set AAL=AAL>> IR
If IR<O, set AAL = AAL<<-IR
TEMP(K) = AAL

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)

NLSSTATE(11) = NLSSTATE(11) + NLS

For L=1,2,..,10, dothenextline
NLSSTATE(L) = NLSSTATE(L + 1)

| Multiply —add
| Memory shift

| STATELPC(0) = garbage if J=1; it is OK

| Shift to align

| STATELPC(0) = garbage if J=1;itisOK

| No shift necessary for thistime

| A() wasQ14, NLS of AAL

| isnow NLSSTATE(11)

| Clipto 16 hitsif necessary since

| STATELPC(1) will be multiplier input

| Save lower 16-bit word for
| STATELPC

| Make TEMP Q2 format

|

I

| Re-normalize new STATELPC to 15 bits

| Update NLSSTATE

In the fixed point pseudo-code for block 10, TEMP, ZIRWFIR and ZIRWIIR are Q2. In the previous block TEMP was
explicitly created with this value. Thus, we do not need to normalize to add them together. Thisis the fixed point pseudo-
code for block 10 (the perceptual weighting filter) during zero-input response computation.

ForK =1, 2, ..., IDIM, do the following
AAO = TEMP(K) << 14

For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines

AAO = AAO + ZIRWFIR(J) * AWZ(J + 1)
ZIRWFIR(J) = ZIRWFIR(J - 1)

AAO = AAO + ZIRWFIR(L) * AWZ(2)
ZIRWFIR(1) = TEMP(K)
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For J=LPCW, LPCW -1, ..., 3, 2, do the next 2 lines
AA0=AAO0-ZIRWIIR(J) * AWP(J+1)
ZIRWIIR(J) = ZIRWIIR(J-1)

AAO = AAO - ZIRWIIR(1) * AWP(2)
AAO=AAQ>> 14

If AAO > 32767, set AAO = 32767
If AAO <-32768, set AAO =-32768

ZIR(K) = AAO
ZIRWIIR(1) = AAO

Repeat the above for the next K

G.33

| All-pole part
| of thefilter

| Handlelast one
| differently

| ClipsinceZIR & ZIRWIIR
| will be multiplier input

| Save lower 16-bit word
| for ZIR and ZIRWIIR

Blocks 9 and 10 — Pseudo-code for synthesis and perceptual weighting filter memory updates

Thisisthe floating point pseudo-code for blocks 9 and 10, the filter memory update.

ZIRWFIR(1) =ET(2)
TEMP(1) = ET(2)
For K=2,3, ..., IDIM, do the following
A0 =ET(K)
Al=0
A2=0
For 1=K,K-1, .., 2, dothenext5lines
ZIRWFIR() = ZIRWFIR(I — 1)
TEMP(l) = TEMP(l — 1)
A0=A0-A(l) * ZIRWFIR()
Al=Al+AWZ(l)* ZIRWFIR()
A2=A2-AWP(l) * TEMP()

ZIRWFIR(1) = A0
TEMP(1) = A0 + Al + A2

Repeat the above indented section for the next K

| ZIRWFIR now ascratch array

| Compute zero-state responses
| at various stages of
| the cascaded filter

| Now update filter memory by adding
| zero-state responses to zero-input
| responses

For K=1,2,..,|DIM, dothenext 4 lines
STATELPC(K) = STATELPC(K) + ZIRWFIR(K)
If STATELPC(K) > MAX, set STATELPC(K) = MAX | Limit the range
If STATELPC(K) < MIN, set STATELPC(K) = MIN
ZIRWIIR(K) = ZIRWIIR(K) + TEMP(K)

For 1=1,2,..,LPCW, dothenextline | Now set ZIRWFIR to
ZIRWFIR(l) = STATELPC(I) | theright value

I =IDIM +1

For K=1,2, .., IDIM, dothenextline | Obtain quantized speech by
ST(K) = STATELPC(l —K) | reversing order of synthesis

| filter memory

The following is the fixed point pseudo-code for the same blocks. STATELPC has 10 exponents stored in
NLSSTATE(1), ..., NLSSTATE(10). Associated with the array ET is NLSET. ZIRWIIR and ZIRWFIR are Q2 after the
update. ZIRWFIR is initially used as a scratch array. Upon entry into this code, both ET and the top 5 elements of
STATELPC [STATELPC(1) through STATELPC(5)] are 15-bit block floating point arrays. When ET is filtered by the
LPC synthesis filter without memory, the output (i.e. zero-state response of the LPC filter) may exceed the 15-bit range.
When this happens, we right shift ET by 1 bit and repeat the calculation until the output fits into 15 bits. Empiricaly the
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process repeats at most 3 times (or 4 times if the first time through is counted). Note that there are only 10 multiply-adds
for each repetition of the calculation, because the calculation of the zero-state response of the weighting filter has been
moved to a separate loop. The zero-state response of the LPC filter calculated this way is always representable in 15 bits
or less. When this response is then added to the 15-bit STATELPC to update STATELPC, the result of the addition is
guaranteed to be representable by 16 bits. Before exiting this code, STATELPC is scaled to 14 bits to avoid overflowsin
the zero-input response calculation later.

LABEL1: ZIRWFIR(1) = ET(1)

For

K =23, ..., IDIM, do the following indented lines

AAO = ET(K) << 14
For | =K, K -1, ..., 2, do the next 3 lines
ZIRWFIR(l) = ZIRWFIR(I — 1)
P=A(l) * ZIRWFIR(I)

AAO0O=AAO0-P

AA1=AA0<<3
I1f AA1 overflowed above, do the next 4 lines
For 1=1,2,..,1DIM, dothe next line
ET()=ET()>>1
NLSET =NLSET -1
GO TO LABEL1

AAO=AAQ>> 14
ZIRWFIR(1) = AAO

Repeat the above indented section for the next K

N=IDIM +1
TEMP(1) = ZIRWFIR(IDIM)

For

K =23, ..., IDIM, do the following indented lines

AA1=ZIRWFIR(N —K) << 14

M =IDIM —K

For | =K,K -1, ..., 2, do the next 5 lines
TEMP(l) = TEMP(I - 1)
P=AWZ(l) * ZIRWFIR(l + M)
AA1=AA1+P
P=AWP(I) * TEMP(l)

AA1=AAl1-P

AALl=AALl>>14
If AAL > 32767, set AAL = 32767

If AAL < -32768, set AAL = 32768
TEMP(1) = AA1

Repeat the above indented section for the next K

IR=NLSET -2

For

K =1, ..., IDIM, do the next 2 lines
If IR>0, set TEMP(K) = TEMP(K) >> IR
If IR<O0, set TEMP(K) = TEMP(K) <<-IR

If NLSET = NLSSTATE(10), go to LABEL2
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| First calculate zero-state response
| of the LPC synthesisfilter

| Because A(1) = 1in Q14 = 16384

| @14 multiplication
| Compute zero-state responses

| Make sure after AAO >> 14 |ater,
| the result does not exceed 15 bits.
| If it does, then ET >>1

| and repeat the

| calculation until it fits

| Compensate for A() being Q14
| Keep lowest 16 bits

| Now calculate the zero-state response
| of the weighting filter

| Because AWZ(1) = 1 (in Q14 = 16384)
| Shift all-pole part of filter memory
| all-zero part of the weighting filter

| All-pole part of the weighting filter

| Clipif necessary, since TEMP(1)
| will be 16-bit input to multiplier
| Keep lowest 16 bits

| Now shift TEMPto Q2 like
| ZIRWIIR

| Now update filter memory by adding
| zero-state responses to zero-input

| responses. First we must match the

| NLSof ZIRWFIR and STATELPC

| No changes necessary



If NLSET < NLSSTATE(10), do the next 5 lines
NLSD = NLSSTATE(10) — NLSET
For K =1, 2, ..., IDIM, do the next line
STATELPC(K) = STATELPC(K) >> NLSD
NLSSTATE(10) = NLSET
goto LABEL2

NLSD = NLSET — NLSSTATE(10)
For K=1,2,..,IDIM, dothenextline
ZIRWFIR(K) = ZIRWFIR(K) >> NLSD

LABEL2:
AAL = 4095

If NLSSTATE(10) ® 0, set AAL = AAL << NLSSTATE(10)
If NLSSTATE(10) < 0, set AAL = AA1 >>—NLSSTATE(10)

For K=1,2,..,IDIM, do the following indented lines
AAO = STATELPC(K) + ZIRWFIR(K)
If AAO>AAL set AAO=AAL
If AAO <-AAL, set AAD =-AAl

If AAO > 32767, set AAO = 32767
If AAO < 32768, set AAO = —32768
STATELPC(K) = AAO

AAO = ZIRWIIR(K) + TEMP(K)

If AAO > 32767, set AAO = 32767

If AAO < —32768, set AAO = 32768
ZIRWIIR(K) = AAO

Repeat the above indented section for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS)
NLSSTATE(10) = NLSSTATE(10) + NLS

IR = NLSSTATE(10) — 2

For 1=1,2,..,5 dothenext4lines
AAOQ = STATELPC(l)
IfIR>0, set AAO=AA0>>IR
IfIR<O0, set AAO=AA0<<-IR
ZIRWFIR(l) = AAO

IR=NLSSTATE(9) —2

For 1=6,7,..,10, dothenext 4 lines
AAOQ = STATELPC(l)
IfIR>0, set AAO=AA0>>IR
IfIR<O0, set AAO=AA0<<-IR
ZIRWFIR(l) = AAO

I =IDIM +1

For K=1,2, .., IDIM, dothenextline
ST(K) = STATELPC(l —K)

NLSST = NLSSTATE(10)

| Loseprecisionin STATELPC
| by NLSD bits

| Only caseleftis:

| NLSET >NLSSTATE

| Lose precisionin ZIRWFIR
| by NLSD bits

| Now we are ready

| 4095 = STATELPC clipping level
| Shift clipping level to

| aignwith STATELPC

| Update LPC filter memory.

| If necessary, perform the clipping as specified
| infloating point in Recommendation G.728.

| Note that these values were scaled.

| So,if 32767 <| AAO | <AAL, weneedtoclip
| AAOto 16 bits since STATELPC(K)

| will later be a 16-bit

| input to the multiplier

| Update all-pole part of W(z) memory
| Again, clipto 16 bitsif necessary

| since ZIRWIIR(K) will later be

| a16-bit input to the multiplier

| Scale STATELPC to 14 bits
| to avoid overflow in
| zero-input response calculation later

| Now set ZIRWFIR, the all zero
| part of W(z) memory, to the
| right valuesin Q2 format

| Obtain quantized speech by

| reversing the order of thetop 5

| synthesisfilter memory locations
| NLSST isonly used in decoder
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G.34 Block 11 -VQ target vector computation
Thisisthe floating point pseudo-code for block 11, the VQ target vector computation.

For K=1,2, .., IDIM, dothenextline
TARGET(K) = SW(K) — ZIR(K)

For the fixed point code, SW and ZIR are both in Q2 format, the same as the input speech. Thus, NLSTARGET = 2. Here
isthe fixed point pseudo-code.

set NLSTARGET =2

For K=1,2,..,|DIM, dothenext 6 lines
AAQ = SW(K)
AAL = ZIR(K)
AAO0O=AAO0-AAl
If AAO > 32767, set AAO = 32767 | Clipif necessary
If AAO <-32768, set AAO =-32768
TARGET(K) = AAO

G.35 Block 12— Impulse response vector calculation

The following is the floating pseudo-code for block 12.

TEMP(1) =1 | TEMP = synthesis filter memory
ws(1) =1 | WS =W(2) al-pole part memory
For K=2,3, .., IDIM, do thefollowing

A0=0

Al=0

A2=0

For | =K,K -1, ..., 3, 2, do the next 5 lines
TEMP(l) = TEMP(I - 1)
WS(l) =WS(I - 1) |
A0=A0-A(l) * TEMP(I) | Filtering
Al=A1+AWZ(l)* TEMP(l) |
A2=A2-AWP(l) * WS(I)

TEMP(1) = A0
WS(1) =A0+Al +A2

Repeat the above indented section for the next K

ITMP=IDIM +1 | Obtain h(n) by reversing the order of the memory
For K=1,2,..,1DIM, do the next line | of al-pole section W(z)
H(K) = WS(ITMP —K) |

The values for the predictor coefficients, A(), AWZ() and AWP() are al stored in Q14 format. In the fixed point
pseudo-code to follow, only two 32-bit accumulators are indicated, AAO and AALl. Accumulators Al and A2 in the
floating point pseudo-code have been combined. Guard bits are not required. The output array, H() is stored in
Q13 format. The following is the fixed point pseudo-code.

TEMP(1) = 8192 | TEMP = synthesis filter memory
WS(1) = 8192 | WS =W(2) al-pole part memory
| WS& TEMP are Q13 16-hit words

For K=2,3,..,1DIM, dothefollowing

AA0=0

AA1=0

For I =K,K -1, ..., 3, 2, do the next 5 lines
TEMP(l) = TEMP(I - 1)
WS(l) =WS(I - 1) |
AA0=AA0-A(l) * TEMP(I) | Filtering
AA1l=AALl+AWZ(l)* TEMP(I) |
AALl=AAl1-AWP(I)* WS(I)
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AA1=AAO0+AAl

AA0=AA0>>14 | >> 14 because A(), AWZ() and
AAl=AAl1>>14 | AWP() were inQ14 format
TEMP(1) = AAO

WS(1) = AAL

Repeat the above indented section for the next K

ITMP=IDIM +1 | Obtain h(n) by reversing the order of the memory

For K=1,2,..,1DIM, do the next line | of all-pole section of W(z)
H(K) =WS(ITMP —K) |

G.3.6 Block 13 — Time-rever sed convolution

This module performs time-reversed convolution in preparation for the codebook search. The origina floating point

pseudo-code was

For K=1,2, .., IDIM, dothefollowing
Kl=K-1
PN(K)=0
For J=K,K +1, ..., IDIM, do the next line
PN(K) = PN(K) + TARGET(J) * H(J—K1)

Repeat the above for the next K

In the fixed point version, H() is represented in Q13 format and TARGET is represented in block floating point.

NLSTARGET isdetermined in block 16. NLSPN isfixed at 7.

For K=1,2, .., IDIM, dothefollowing
Kl=K-1
AA0=0 | Accumulator zeroed
For J=K,K +1, ..., IDIM, do the next 2 lines
P=TARGET(J) * H(J-K1)

AAO0O=AAQ0+P
AAO0=AAQ0>>13+ (NLSTARGET -7) | Right shift to make Q7
If AAO > 32767, set AAO = 32767 | Clip AAOto 16 bitssince
If AAO <-32768, set AAO =-32768 | PN will be multiplier input
PN(K) = AAO | AAOQ in saturation mode

Repeat the above for the next K

G.3.7  Block 14 — Shape codevector convolution and energy calculation
Thisis the pseudo-code for the codevector energy calculation, blocks 14 and 15.

For J=1,2,..,NCWD, do thefollowing | One codevector per loop
JA=J-1)*IDIM
For K =1, 2, ..., IDIM, do the next 4 lines
Kl=J1+K+1
TEMP(K) =0
For 1=1,2, .., K, dothenextline
TEMP(K) = TEMP(K) + H(I) * Y(K1-1) | Convolution

Repeat the above 4 lines for the next K

Y2(J) =0
For K =1, 2, ..., IDIM, do the next line
Y2(J) =Y2(J) + TEMP(K) * TEMP(K) | Compute energy

Repeat the above for the next J
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In the fixed point pseudo-code, H() is represented in Q13 format and Y () in Q11 format. It was found empirically that
after convolution of H() and Y (), overflows in the accumulator, i.e. a result with magnitude larger than 2 ** 31, did not
occur. Thus, the following pseudo-code does not test for overflow in the accumulator. This makes the corresponding DSP
code run faster. The subsequent shift by 14 bits is necessary to alow representation of TEMP() in Q10 format.
The representations used were found to work for a variety of files. NLSY2 = (NLSH + NLSY —14) * 2—15. Since

NLSY =11 and NLSH =13 then NLSY2 = 5.

For J=1,2, .., NCWD, do thefollowing
J1=@J-1)*IDIM
For K =1, 2, ..., IDIM, do the next 7 lines
Kl=J1+K+1
AA0=0
Forl=1,2, ..., K, dothenext 2 lines
P=H()*Y(K1-1)
AAO0O=AAO0+P

AAO = AAD >> 14
TEMP(K) = AAO

Repeat the above 7 lines for the next K

AA0=0

For K =1, 2, ..., IDIM, do the next 2 lines
P=TEMP(K) * TEMP(K)
AAO=AAQ0+P

AAO0=AA0>>15

Y2(J) = AAO

Repeat the above for the next J

G.3.8 Block 16 —VQ target vector normalization

The floating point pseudo-code for this module is given first.

TMP = 1./GAIN
For K=1,2,..,1DIM, do the next line
TARGET(K) = TARGET(K) * TMP

| One codevector per loop

| Convolution

| Lowest 16 hits only

| Compute energy

| Lowest 16 hits only

For the fixed point pseudo-code, we need to consider the NLS of the gain and the NLS of TARGET. At entry

NLSTARGET = 2. In the process, we will create the NLS for TMP.

Call DIVIDE(16384, 14, GAIN, NLSGAIN, TMP, NLSTMP)

For K=1,2,..,|DIM, dothenext 2 lines
AAO0=TMP* TARGET(K)
TARGET(K) = AA0 >> 15

NLSTARGET =2 + NLSTMP - 15

Call VSCALE(TARGET, IDIM, IDIM, 14, TARGET, NLS)
NLSTARGET = NLSTARGET + NLS
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| Numerator for division = 16384

| NLS= 14 for numerator

| NLSfor denominator is NLSGAIN
| NLSGAIN determined in block 46

| AAQis32 hits
| Keep only the lower 16 bits
| TARGET is Q2 at this point

| Make TARGET block
| floating point

| NLSwas changein VSCALE



G.39 Block 17 -VQ search error calculator and best codebook index selector

The following is the floating point pseudo-code for the error calculator and best codebook index selector (blocks 17
and 18).

Initialize DISTM to the largest number representable in the hardware
N1=NG/2
For J=1,2, .., NCWD, do thefollowing

J1=(J-1)* IDIM

COR=0
For K =1, 2, ..., IDIM, do the next line
COR =COR + PN(K) * Y(J1 + K) | Compute inner product Pj

If COR > 0, then do the next 5 lines
IDXG=N1
For K=1,2,..,N1-1, dothenext“if" statement
If COR<GB(K)* Y2(J), dothenext 2 lines
IDXG =K | Best positive gain found
GO TO LABEL

If COR £ 0, then do the next 5 lines
IDXG =NG
For K=N1+1,N1+2, .., NG-1,dothenext"“if’ statement
If COR>GB(K)* Y2(J), dothenext 2 lines

IDXG =K | Best negative gain found
GO TO LABEL
LABEL: D =-G2(IDXG) * COR + GSQ(IDXG) * Y2(J) | Compute distortion IID\
If D <DISTM, do the next 3 lines
DISTM =D | Savethelowest distortion
IG=IDXG | and the best codebook
1IS=J | indices so far

Repeat the above inserted section for the next J
ICHAN =(1S-1)* NG + (IG-1)

The following is the fixed point pseudo-code for the error calculator and best codebook index selector (blocks 17
and 18). The code has been written such that the absolute value of the correlation with the target value, AAO below, is
used for the gain search and then later the sign of the correlation is re-determined. While this may seem like more work, it
avoids having a branch in the middle of the search loop. For most DSP implementations avoiding a branch saves
instructions. Alternatively, the sign can be saved and the recomputation avoided. However, this usually costs an extra
instruction in the search loop as well.

DISTM = 2147483647
For J=1,2, .., NCWD, dothefollowing
J1=(J-1)* IDIM

AA0=0
For K =1, 2, ..., IDIM, do the next 2 lines
P=PN(K) * Y(J1 + K) | Compute inner product Pj
AA0O=AAO0+P | NLSfor AAOis7 +11=18
If AAO<O, set AAO=-AA0 | Take absolute value
IDXG=1
P=GB(1) * Y2(J) | NLSfor Pis13+5=18

If AAO2 P, set IDXG = IDXG + 1
P=GB(2) * Y2(J)
If AAO2 P, set IDXG = IDXG + 1
P=GB(3)* Y2(J)
If AAO2 P, set IDXG = IDXG + 1
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AAO0=AA0>>14 | NLSfor AAO=4

If AAO > 32767, set AAO = 32767 | Clip AAO; AAOQ in saturation mode
AA1=GSQ(IDXG) * Y2(J) | NLSGSQ =11, NLSY2=5,s0 NLSAA1 =16
P=G2(IDXG) * AAO | NLSG2 =12, NLSAAO =4, so0NLSP =16
AAl1=AAl1-P
If AA1 < DISTM, do the next 3 lines

DISTM = AAl | Double precision DISTM

IG=IDXG

1S=J

Repeat the above inserted section for the next J

AA0=0 | Now find the sign bit
J=(1S-1)*IDIM
For K=1,2,..,IDIM, dothenext 2 lines
P=PN(K) * Y(J1 + K) | Compute inner product
AAO0O=AAO0+P
IfAAOE£OQ,setIG=1G+4

ICHAN = (IS—1) * NG + (1IG - 1)

In the above code, we used the following four lines

AAO=AA0>> 14 | NLSfor AAO =4

If AAO > 32767, set AAO = 32767 | Clip AAO

AA1=GSQ(IDXG) * Y2(J) | NLSGSQ =11, NLSY2 =5, so NLSAAL = 16
P =G2(IDXG) * AAD | NLSG2 =12, NLSAAO = 4, 0 NLSP = 16

In DSP chips which have a“clipping” function, these lines can be replaced by the following code to give the exact same
results.

AA0O=AA0<<2 | NLSfor AAO=20

AAOQ = CLIP(AAQ) | AAOisin saturation mode

AAO0=AA0>>16 | Take high word; NLSfor AAO=4
AA1=GSQ(IDXG) * Y2(J) | NLSGSQ =11, NLSY2 =5, s0 NLSAA1 =16
P =G2(IDXG) * AAD | NLSG2 =12, NLSAAO=4,s0NLSP =16

The CLIP function and saturation mode refer to the concept of not allowing AAO to overflow when the << 2 operation is
performed. Instead of overflow, AAQ is set to the maximum positive or negative number, depending on its origina sign.
In this case, AAO is always positive. This alternative is DSP dependent and may require more than a 32 bit accumulator.
The dternative in the main pseudo-code can always be implemented.

G.3.10 Block 19 —Excitation VQ codebook and block 21 — Gain scaling unit

Thisisthe floating point version of the pseudo-code for block 19, the excitation VQ codebook.

NN =(1S-1)* IDIM
For K=1,2, .., IDIM, dothenextline
YN(K) =GQ(IG) * Y(NN + K)

The floating point version of the pseudo-code for block 21, the gain scaling unit is given below.

For K=1,2,..,IDIM, dothenextline
ET(K) = GAIN * YN(K)
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For the fixed point pseudo-code, we combine both blocks 19 and 21 into a single module. Both Y and GQ have fixed
Q formats, Q11 and Q13, respectively. The value of GAIN has associated with it NLSGAIN. To get the maximum
accuracy, the product GQ(IG) * GAIN is normalized to 32 bits before rounding to the upper 16 bits is performed. Let
NNGQ(I) be [1 + the number of left shifts needed to normalize the Q13 GQ(I)]. So, NNGQ(I) =3 for 1 =1, 2, 5, 6,
NNGQ(I) =2for 1 =3, 7, and NNGQ(l) = 1 for | =4, 8. Then the pseudo-code can be written as follows.

AAO = GQ(IG) * GAIN
AAO = AAO << NNGQ(IG)

TMP = RND(AAO)

NLSAAO = 13 + NLSGAIN
NLSTMP = NLSAAO + NNGQ(IG) — 16

NN = (IS—1) * IDIM
Call VSCALE(Y (NN + 1), IDIM, IDIM, 14, TEMP, NLS)

For K=1,2,..,|DIM, dothenext 2 lines
AAO = TMP * TEMP(K)
ET(K) = RND(AAQ)

NLSET = NLSTMP + 11+ NLS-16

G.3.11 Block 32 —Decoder synthesisfilter

| AAO has NNGQ(IG) leading zeros

| Left shift NNGQ(IG) bitsto

| normalize AAO

| Round to upper 16 bits and assign to TMP

| Qformat of the product GQ(IG) * GAIN
| Qformat of TMP, because

| AAOQ left shift by NNGQ(IG) bits

| then round and take upper 16 bits

| Normalize selected shape
| codevector to 16 bits; putin TEMP

| TMP and TEMP both normalized to 16 hits,
| so the product has 1 leading zero.

| Directly rounding to high work

| givesusal5-bit ET array

| Calculatethe NLSfor ET

Thisisthe floating point pseudo-code for block 32, the decoder synthesisfilter.

For K=1,2, .., |DIM, dothenext 6 lines
TEMP(K) =0
For J=LPC,LPC-1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) — STATELPC(J) * A(J+ 1)

STATELPC(J) = STATELPC(J- 1)

TEMP(K) = TEMP(K) — STATELPC(1) * A(2)
STATELPC(1) = TEMP(K)

Repeat the above for the next K

TEMP(1) =ET(1)
For K=23, .., IDIM, dothenext5lines
A0 =ET(K)
For | =K,K -1, ..., 2, do the next 2 lines
TEMP(l) = TEMP(I - 1)
A0=A0-A(l) * TEMP(I)

TEMP(1) = A0

Repeat the above 5 lines for the next K

For K=1,2,..,IDIM, dothenext 3lines
STATELPC(K) = STATELPC(K) + TEMP(K)

If STATELPC(K) > MAX, set STATELPC(K) = MAX

If STATELPC(K) < MIN, set STATELPC(K) = MIN

| =IDIM +1
For K=1,2,..,IDIM, dothenextline
ST(K) = STATELPC(l —K)

| Zero-input response

| Handle last one differently
I

| Compute zero-state response

| Now update filter memory by adding
| zero-state responsesto zero-input
| responses

| ZIR+ZSR
| Limit the range

| Obtain quantized speech by
| reversing order of synthesis
| filter memory
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The fixed point pseudo-code for block 32 follows the same methodology used in block 9 except that there is no memory
update for the perceptual weighting filter.

NLSSTATE(11) = NLSSTATE(1)
For K =2, 3,4, .., 10, do the next line | Find minimum NLSSTATE
If NLSSTATE(K) < NLSSTATE(11), set NLSSTATE(11) = NLSSTATE(K)

For K=1,2, .., 1DIM, dothefollowing

1=1

L=6-K

J=LPC

AA0=0

For LL =1, ..., L, dothe next 3lines
AAO0=AAQ0-STATELPC(J) * A(J+ 1) | Multiply —add
STATELPC(J) = STATELPC(J-1) | Memory shift
J=J-1

NLS = NLSSTATE(l) - NLSSTATE(11)
AA1=AA0>>NLS

For | =2, ..., 10, do the next 8 lines
AA0=0
ForLL =1, 2, ..., IDIM, do the next 3 lines
AAO0=AAQ0-STATELPC(J) * A(J+1)

STATELPC(J) = STATELPC(J—1) | STATELPC(0) = garbageif J=1; it is OK
J=J-1

NLS=NLSSTATE(l) - NLSSTATE(11)

AA0=AA0>>NLS | Shifttoalign

AA1=AAl1+AAO0

If K=1, goto SHIFT2

L=K-1

AA0=0

For LL=1,2, ..., L,dothenext 3lines
AAO0=AAQ0-STATELPC(J) * A(J+ 1)

STATELPC(J) = STATELPC(J-1) | STATELPC(0) = garbage if J=1; it is OK
J=J-1
AAl1=AAl+AA0 | No shift necessary for thistime
SHIFT2: AAL=AAL>> 14 | A() was Q14, NLS of AAL
| isnow NLSSTATE(11)
If AA1 > 32767, set AAL = 32767 | Clipto 16 bitsif necessary since
If AA1 <-32768, set AA1 =-32768 | STATELPC(1) will be multiplier input
STATELPC(1) = AAl | Savelower 16-bit word
IR = NLSSTATE(11) - 2 | for STATELPC
IfIR>0,set AA1=AAL1>>IR | Make TEMP Q2 format

If IR<0, set AAL=AALl <<—IR |
TEMP(K) = AA1

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)
NLSSTATE(11) = NLSSTATE(11) + NLS | Re-normalize new STATELPC to 15 bits

For L=1,2,..,10,dothenextline | Update NLSSTATE
NLSSTATE(L) = NLSSTATE(L + 1)

| Frst calculate zero-state response

LABEL1: TEMP(1) = ET(1) | of the LPC synthesis filter
For K=2,3,..,1DIM, do thefollowing indented lines
AA0=ET(K) << 14 | Because A(1) =1in Q14 = 16384

For | =K, K -1, ..., 2, do the next 3 lines
TEMP(I) = TEMP(l - 1)
P=A(l)* TEMP(I) | @14 multiplication
AA0=AAO0-P | Compute zero-state responses
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AA1=AA0<<3
I1f AA1 overflowed above, do the next 4 lines
For 1=1,2,..,1DIM, dothe next line
ET()=ET()>>1
NLSET =NLSET -1
GO TOLABEL1

AAO=AA0>> 14
TEMP(1) = AAO

Repeat the above indented section for the next K
If NLSET = NLSSTATE(10), go to LABEL2

If NLSET < NLSSTATE(10), do the next 5 lines
NLSD = NLSSTATE(10) —NLSET
For K =1, 2, ..., IDIM, do the next line
STATELPC(K) = STATELPC(K) >> NLSD
NLSSTATE(10) = NLSET
goto LABEL2

NLSD = NLSET — NLSSTATE(10)

For K=1,2, .., IDIM, dothenextline
TEMP(K) = TEMP(K) >> NLSD

LABEL2:

AA1 = 4095

If NLSSTATE(10) ¢ 0, set AAL = AAL << NLSSTATE(10)
If NLSSTATE(10) < 0, set AAL = AAL >>-NLSSTATE(10)

For K=1,2,..,1DIM, dothefollowing indented lines
AAQ = STATELPC(K) + TEMP(K)
If AAO > AA1, set AAO = AAL

If AAO <-AAL set AAD =-AAl

If AAO > 32767, set AAO = 32767
If AAO < -32768, set AAO = —32768
STATELPC(K) = AAO

Repeat the above indented section for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS)
NLSSTATE(10) = NLSSTATE(10) + NLS

I =IDIM +1

For K=1,2, .., IDIM, dothenextline
ST(K) = STATELPC(l —K)

NLSST = NLSSTATE(10)

| Make sure after AAO >> 14 |ater,

| theresult does not exceed 15 bits.
| If it does, then ET >>1

| and repeat

| the calculation until it fits

| Compensate for A() being Q14
| Keep lowest 16 bits

| No changes necessary

| Lose precisionin STATELPC
| by NLSD bits

| Only caseleftisNLSET > NLSSTATE
| Lose precisionin TEMP

| by NLSD bits

|

| Now we are ready

| 4095 = STATELPC clipping level
| Shift clipping level to

| aignwith STATELPC

| Update LPC filter memory

| If necessary, perform the clipping as specified in
| floating point in Recommendation G.728

| Note that these values were scaled

| So,if 32767 >| AAO| < AA1, we need

| to clip AAO to 16 bits since STATELPC(K)

| will later be a 16-bit input to

| the multiplier

| Scale STATELPC to 14 bits
| to avoid overflow in
| zero-input response calculation later

| Obtain quantized speech by

| reversing the order of thetop 5

| synthesis filter memory locations
| NLSST is used later in decoder

G.3.12 Block 36 — Pseudo-code for hybrid windowing module

In this subclause both the floating point and fixed point pseudo-code for block 36 are given. First, the floating point

pseudo-code is presented.

N1=LPCW + NFRSZ
N2 = LPCW + NONRW
N3 =LPCW + NFRSZ + NONRW

For N=1, 2, ..., N2, do the next line
SBW(N) = SBW(N + NFRSZ)

For N=1, 2, ..., NFRSZ, do the next line
SBW(N2 + N) = STMP(N)

| Compute some constants (can be
| precomputed and stored in memory)

| Shift the old signal buffer

| Shift in the new signal
| SBW(N3) isthe newest sample
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K=1

For N=N3,N3-1, ..., 3,2, 1, dothenext 2 lines
WS(N) = SBW(N) * WNRW(K) | Multiply the window function
K=K+1

For 1 =1, 2, ..., LPCW + 1, do the next 4 lines
TMP=0
For N=LPCW +1, LPCW + 2, ..., N1, do the next line
TMP=TMP +WS(N) * WS(N + 1 1)

REXPW(I) = (1/2) * REXPW(I) + TMP | Update the recursive component
For 1 =1, 2, ..., LPCW + 1, do the next 3 lines
R(1) = REXPW(I)
For N=N1+1, N1+2, .., N3, dothenextline
R() =R(I) + WS(N) * WS(N +1—1) | Add the non-recursive component
R(1) = R(1) * WNCF | White noise correction

Now we give the fixed point version of the same module. In this code we have added several new variables. NL SREXPW
isaglobal variable holding the number of left shifts for normalizing REXPW. This variable isinitialized with a value of
31.

N1=LPCW + NFRSZ (= 10 + 20) | Compute some constants (can be
N2 = LPCW + NONRW (= 10 + 30) | precomputed and stored in memory)
N3 =LPCW + NFRSZ + NONRW (=10 + 20 + 30)

For N=1, 2, ..., N2, do the next line

SBW(N) = SBW(N + NFRSZ) | Shift the old signal buffer
For N=1, 2, ..., NFRSZ, do the next line
SBW(N2 + N) = STMP(N) | SBW(N3) isthe newest sample

| All SBW are Q2 and represented
| in 15 bits precision

Call FINDNLS(SBW, N3, N3, 14, NLS) | Find the amount of left shifts
| needed in the next loop to get
| 2 bits of headroom. We do not
| really need to do the scaling

| Wejust use NLS
NLSTMP=NLS-1
K=1
For N =60, 59, ..., 1, do the next 4 lines
P = SBW(N) * WNRW(K) | WNRW is Q15, left shift by
AAO0 =P <<NLSWS | NLSWS bits will make
WS(N) = RND(AAO0) | thelargest WS(N) element
K=K+1 | a14-bit number (2 bits of headroom for
| later acumulation)
NLSATTW =15
Call

HWMCORE(LPCW, N1, N3, NLSATTW, WS, NLSTMP, REXPW, NLSREXPW, R, ILLCONDW)

If NLSREXPW > 41, set NLSREXPW =41 | Toavoid reduced accuracy in
| REXPW() and R() during long periods
| of zero input signa

The subroutine HWM CORE can be found in G.3.18.

In the above code a call to FINDNLS searches the entire SBW buffer of 60 samples. However, a bit-exact substitute
which uses 2 more words of memory can be used to reduce that computation. SBW will always contain 40 old samples
and 20 new ones. We can divide this into three vectors of 20 samples each. We keep track of the NLS for each of the
three vectors and then choose the minimum value one for use in applying the hybrid window. Since two of the vectors are
composed of old samples, we will already know their respective NLS. We need only check the newest vector to find its
NLS. We then need to store the NLS for the newest vector and the newer of the two old vectors for the next computation.
This method will result in the selection of exactly the same NL S as the procedure shown in the above pseudo-code.
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The following table lists all variables in this pseudo-code with their representation format and size for easy reference. The
table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed,
or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes

which variables were not included in the previous floating point pseudo-code (old/new).

Variable Format Size Temp/perm Old/new

NLS integer 1 temp new
NLSREXPW integer 1 perm new
NLSTMP integer 1 temp new
REXPW BFL 11 perm old
R BFL 1 perm old
SBW Q2 60 perm old
STMP Q2 20 perm old
ws BFL 60 temp old
BFL Block floating point

Integer 16-bit integer

G.3.13 Block 38 —Weighting filter coefficient calculator

We begin with the floating point pseudo-code for this block.

If ICOUNT * 3, skip the execution of this block

Otherwise, do the following

For 1 =2, 3, ..., 11, do the next line
AWP(l) = WPCFV(l) * AWZTMP(I)

For 1 =2, 3, ..., 11, do the next line
AWZ(I) = WZCFV(l) * AWZTMP(l)

| Scale denominator coefficients

| Scale numerator coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin’s recursion or
that AWZTMP could not even be expressed in Q13. (It has never been observed that Q13 was not sufficient, but this
possibility must still be considered.) The variable ILLCONDW is a flag from block 37 which indicates whether the
results of block 37 are valid or not. In Recommendation G.728, there is an implicit assumption that the results of Durbin
will not be used if ILLCONDW is true. That is, AWZ and AWP will not be updated from AWZTMP. The same
assumption is repeated here. If ILLCONDW is true, then we do not update AWP or AWZ. It is unnecessary to do so
because we will continue to use the previous values.

Next, we must consider the possibility that the coefficients AWZTMP() from Durbin’s recursion may be in Q13, Q14
or Q15. NLSAWZTMP is the number of left shifts of AWZTMP. We want the numerator and denominator coefficients,
AWZ and AWP to be in Q14 for the output. It may be the case that AWZ cannot be represented in Q14. When thisis the

case, do not update AWZ and AWP. The fixed point pseudo-code is given by the following.

If ICOUNT * 3, skip the execution of this block
Otherwise, do the following

| First check to seeif ILLCONDW istrue
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If ILLCONDW = .TRUE., skip the execution of this block
Otherwise, do the following

| Next do the numerator coefficients

| If they overflow for Q14,

| do not update AWZ or AWP

| Temporary array WSisused in case

| of overflow, so that AWZ is preserved

For 1 =2,3, ..., 7, do the next 6 lines

AAO0 =WZCFV(l) * AWZTMP(I) | WZCFV isQ14,

If NLSAWZTMP =13, AAO = AA0<<3 | AAOis14 + NLSAWZTMP

If NLSAWZTMP =14, AAO = AA0 << 2 | Make AAO Q30 for all 3 cases by
If NLSAWZTMP =15, AAO=AAO0<<1 | appropriate number of shifts

If AAO overflowed above, go to LABEL | If true, Q14 will overflow

WS(1) = RND(AAO) | Round to high word for WS

| Overflow cannot occur in remaining cases
| If you reach here then

| continue without the checks

| then copy WS to AWZ

For 1 =8, 9, 10, 11, do the next 5 lines
AAO = WZCFV(l) * AWZTMP(l)
If NLSAWZTMP =13, AAO=AA0<<3
If NLSAWZTMP =14, AAO=AA0<< 2
If NLSAWZTMP =15, AAO=AAO0<<1
WS(I) = RND(AAO)
For 1 =2, 3, ..., 11, do the next line | No overflows, so copy
AWZ(I) = WS(l) | WSto AWZ

| Now do the denominator

| coefficients

| If the numerator did not overflow,

| then the denominator cannot, either

For 1 =2,3, ..., 11, do the next 5 lines

AAO0 =WPCFV(l) * AWZTMP(I) | WPCFV isQ14; AAOis 14 + NLSAWZTMP
If NLSAWZTMP =13, AAO = AA0<<3 | Make AAO Q30 for al 3 cases

If NLSAWZTMP = 14, AA0O = AA0 << 2 | appropriate number of shifts

If NLSAWZTMP =15, AAO = AA0 << 1 |

AWRP(I) = RND(AAOQ) | Round to high word for AWP

Exit this subroutine

LABEL: | If program proceeds to here, we will have an overflow
| if wetry to represent AWZ in Q14. In this case,
| do not update the weighting filter coefficients
| (i.e. keep using the filter coefficients from the
| previous adaptation cycle).

G.3.14 Block 43 —Hybrid windowing module

In this subclause both the floating point and fixed point pseudo-code for block 43 are given. First, the floating point
pseudo-code is presented.

N1=LPCLG + NUPDATE | Compute some constants (can be
N2=LPCLG + NONRLG | precomputed and stored in memory)
N3 =LPCLG + NUPDATE + NONRLG

For N=1, 2, ..., N2, do the next line

SBLG(N) = SBLG(N + NUPDATE) | Shift the old signal buffer
For N=1, 2, ..., NUPDATE, do the next line
SBLG(N2 + N) = GTMP(N) | Shift in the new signal

| SBW(N3) isthe newest sample
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K=1

For N=N3,N3-1, ..., 3,2, 1, dothenext 2 lines
WS(N) = SBLG(N) * WNRLG(K)
K=K+1

For 1=1,2, ..., LPCLG + 1, do the next 4 lines
TMP=0

For N=LPCLG+1,LPCLG+2, ..., N1, do the next line

TMP=TMP + WS(N) * WS(N + 1 1)
REXPLG(I) = (3/4) * REXPLG(I) + TMP

For 1 =1, 2, ..., LPCLG + 1, do the next 3 lines
R(l) = REXPLG(l)
For N=N1+1, N1+2, .., N3, dothenextline
R() = R(I) + WS(N) * WS(N +1—1)

R(1) = R(1) * WNCF

Note that before thisroutineis called, GTMP( ) is assigned as

GTMP(1) = GSTATE(4)
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)

N1=LPCLG + NUPDATE (= 10 + 4)
N2 = LPCLG + NONRLG (= 10 + 20)
N3 = LPCLG + NUPDATE + NONRLG (= 10 + 4 + 20)

For N=1, 2, ..., N2, do the next line
SBLG(N) = SBLG(N + NUPDATE)

For N=1, 2, ..., NUPDATE, do the next line
SBLG(N2 + N) = GTMP(N)

Call FINDNLS(SBLG, N3, N3, 14, NLS)
NLSTMP=NLS-1

K=1
For N =34, 33, ..., 1, dothe next 5 lines
P = SBLG(N) * WNRLG(K)
If NLSTMP=-1, set AAO=P>>1
If NLSTMP > -1, set AAO =P << NLSTMP
WS(N) = RND(AAO)
K=K +1

NLSATTLG=14

| Multiply the window function

| Update the recursive component

| Add the non-recursive component

| White noise correction

and the initial values of GSTATE() are —32 in floating point, which is —16384 in Q9 fixed point. Now we give the fixed
point version of the same module. In this code we have added several new variables. NLSREXPLG is a global variable
holding the number of |eft shifts for normalizing REXPLG. Thisvariableisinitialized with avalue of 31.

| Compute some constants (can be
| precomputed and stored in memory)

| Shift the old signal buffer

| SBLG(N3) isthe newest sample

| All SBLG are Q9 and represented
| in 16-bits precision

| Find the amount of left shifts

| needed in the next loop for 2 bits
| of headroom later

| WNRLG is Q15

| WS(N) is 14 bitsor less

Call HWMCORE(LPCLG, N1, N3, NLSATTLG, WS, NLSTMP, REXPLG, NLSREXPLG, R, ILLCONDG)

The subroutine HWM CORE can be found in G.3.18.

The following table lists @l variables in this pseudo-code with their representation format and size for easy reference. The
table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed,
or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes
which variables were not included in the previous floating point pseudo-code (old/new).
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Variable Formeat Size Temp/perm Old/new
GTMP Q9 4 perm old
NLS integer 1 temp new
NLSREXPLG integer 1 perm new
NLSTMP integer 1 temp new
REXPLG BFL 11 perm old
R BFL 11 perm old
SBLG Q9 34 perm old
WS BFL 34 temp old
BFL Block floating point
Integer 16-bit integer

G.3.15 Block 45— Bandwidth expansion module
Thisisthe floating point pseudo-code for block 45, the bandwidth expansion module.

If ICOUNT * 2, skip the execution of this block
For 1 =2,3, ..., LPCLG + 1, do the next line
GP(l) = FACGPV(I) * GPTMP(I) | Scale coefficients

The tables for FACGPV are given in Q14 format, as are the tables for the other bandwidth expansion coefficients. The
values for the input GPTMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed
point Levinson-Durbin recursion module, NLSGPTMP is given by the Levinson-Durbin recursion module to indicate
which format is used for GPTMP. After the multiplication FACGPV(1)*GPTMP(I) the corresponding amount of left
shiftsisrequired.

The final values for GP are always represented in Q14 format. Empirically, the output coefficient arrays of block 45 have
never been too large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to be
prepared to handle the unlikely event of Q14 overflow at the output of the bandwidth expansion blocks. In the pseudo-
code below, we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to the
Levinson-Durbin recursion modules - we do not update the predictor coefficients and keep using the old coefficients of
the previous adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with a flag to signal the filtering
modules which of the two possible Q formats are used. However, this will unnecessarily increase the complexity of the
DSP code and the execution time. Since Q14 overflow was never observed at the output of bandwidth expansion
modules, a simple safety check asimplemented below suffices.

Thisisthe fixed point pseudo-code for block 45.

If ICOUNT * 2, skip the execution of this block
Otherwise, do the following
| First check to seeif ILLCONDG istrue
If ILCONDG =.TRUE., skip the execution of this block
Otherwise, do the following
GPTMP(1) = 16 384
For 1=2,3,4,.. LPCLG+ 1, dothenext 6 lines

AAO0 =FACGPV(l) * GPTMP(I) | AAOisQ27, Q28 or Q29

If NLSGPTMP =13, AAO =AA0<<3 | Make AAO Q30 for all 3 cases by
If NLSGPTMP =14, AA0O = AAO << 2 | appropriate number of shifts

If NLSGPTMP =15, AAO=AAO0<< 1 |

If AAO overflowed above, go to LABEL | If not true,

GPTMP(I) = RND(AA0) | round to high word for GP
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For 1=2,3,4, .., LPCLG + 1, do the next line | Everything is normal, copy GPTMP
GP(l) = GPTMP(I) | to GP and then exit
Exit this program

LABEL: | If program proceeds to here, we will have an
| overflow if wetry
| torepresent GP in Q14. In this case, do not update
| the log-gain predictor coefficients (i.e. keep using
| thelog-gain predictor coefficients of the previous
| adaptation cycle).

G.3.16 Block 46 —Log-gain linear prediction
Thisisthe floating point pseudo-code for the log-gain linear predictor, block 46.
LOGGAIN =0
For |=LPCLG,LPCLG-1, ..., 3,2, dothenext2lines
LOGGAIN = LOGGAIN — GP(I + 1) * GSTATE(l)
GSTATE(l) = GSTATE(l — 1)
LOGGAIN = LOGGAIN — GP(2) * GSTATE(1)

LOGGAIN and GSTATE are represented in Q9 format throughout the coder. GP is represented in Q14 format. Here is
the fixed point pseudo-code.

AA0=0

For |=LPCLG,LPCLG-1, ..., 3,2, dothenext 3lines
P=GP(l +1) * GSTATE(I)
AAO0O=AAO0-P
GSTATE(l) = GSTATE(l — 1)

P =GP(2) * GSTATE(1)

AAO0O=AAO0-P

AAO0=AA0>>14

LOGGAIN =AAO0

This is the floating point pseudo-code for block 98, the log-gain limiter. Since this code is based on modifications made
for fixed point, it does not appear in Recommendation G.728. We include it here in order to have it for comparison
purposes with the fixed point pseudo-code to follow.

If LOGGAIN > 28., set LOGGAIN = 28
If LOGGAIN <-32., set LOGGAIN =-32

Since LOGGAIN isrepresented in Q9 format, the maximum and minimum thresholds are multiplied by 512. These values
are used in the fixed point pseudo-code given below.

If LOGGAIN > 14336, set LOGGAIN = 14336
If LOGGAIN < —-16384, set LOGGAIN =-16384

Thisis the floating point pseudo-code for the Log-Gain Offset Adder which is block 99.
Z = LOGGAIN + GOFF

The floating point value of GOFF is 32 and its fixed point value is 16384, which corresponds to 512 * 32. Since
LOGGAIN has a range between —32 and +28, Z has a range of 0 to 60. The fixed point code is identical to the floating
point code.

Thisisthe floating point code for block 48, the Inverse Logarithm Calculator.
GAIN = 10(Z/20)
The complete value we wish can be expressed in terms of the antilog of 2. Itis

10005Z _ ,0.05100,(10) Z _ 01660964 Z
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We let X = 0.1660964 Z, which will have a range from 0 to 9.97. Finally, we let X =[X] + x, where [X] is the greatest
integer less than or equal to X and x is the fractional part. The value of 2[X] is exact and only needs to be represented by
its exponent. What remains is the problem of computing the value for the fractional part.

In computing X, we let 0.1660964 be represented in Q21 format. This corresponds to a number that can be represented as
10 in the upper 16 bits and 20649 in the lower 15 bits. We multiply Z by both parts separately in order to get good
precision for X. We then separate [X] and X. In computing the exponential for the fractional part we know 0 <x <1, so
1< 2X< 2. Therefore, we can use the following fixed representations. x is Q15 and 2X is Q14. We use a Taylor series
expansion to compute 2X;

X = g?(c4x +c3)x + c2) x + clgx +c0

=c4x4 + c3x3 + c2x2 + clx + c0

The c values are stored in Q14 and Q15 and are given by

c4 = 323 = 0.0098571in Q15
c3 = 1874 = 0.0571899in Q15
c2 = 7866 = 0.2400512in Q15
cl = 22702 = 0.6928100in Q15
cO0 = 16384 = 1.0in Q14

Here is the pseudo-code for computing 100.05 GAIN on a 16-bit DSP with two 32-bit accumulators. It is assumed that
GAIN isin Q9 format and the offset of 32 dB has already been added to it.

AA0=10*Z | ZisQ9, 10isQ6, so AAOis Q15

AAL=20649* Z
AAL=AAl<<1
AA1=RND(AA1)

AAO0=AAO0+AAl
AA1=AA0>>15
NLS=AA1
AA1=AAl1<<15
x=AA0-AAl

AAO=c4* x
AAO0=AAO0<<1
AAl=c<<16
AA0=AA0+AAl
TMP = RND(AAOQ)
AAO0=TMP* x
AAO=AAO0<<1
AAl=c2<<16
AAO0=AAQ0+AAl
TMP =RND(AAOQ)
AAO=TMP* x
AAO0=AAO0<<1
AAl=cl<<16
AA0=AA0+AAl
TMP =RND(AAOQ)
AAO0=TMP* x

AAl=c0=<<16
AAO0=AAO0+AAl

| 20649isQ21, so AA1is Q30
| Make AA1 Q31

| Round AA1to makeit Q15in
| low word

| AAO=[X] +xin Q15

| Want [X] in Q0 and x in Q15
| NLS=[X]

| xisthefractional part in Q15

| Compute 2 ** x

| Q15* Q15==>AA0isQ30
| AAO now Q31

| AAlisQ31

| TMPisQ15, use routing

| Q15* Q15==>AA0isQ30
| AAO now Q31

| AAlisQ31

| TMPisQ15, use routing

| Q15* Q15 = => AAOis Q30
| AAO now Q31

| AA1isQ31

| TMPisQ15, use routing

| Q15* Q15==>AA0isQ30
| No left shift thistime!!

| AA1isQ30

GAIN = RND(AAO) | GAIN is Q14 and contains 2 ** x
| NLSGAIN is 14— NLSfor 2 ** X

NLSGAIN =14 -NLS | Q factor for result
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The following is the floating point pseudo-code for blocks 96 and 97, the calculation of the new value for GSTATE(L).
This block does not appear in Recommendation G.728 and is given here for comparison with the fixed point pseudo-code
to be given immediately following. The input variables are the GAIN value output from block 98, GCBLG, the dB value
of the gain codebook entry selected for the previous excitation vector, and SHAPELG, the dB value of the shape
codevector selected for the previous excitation vector. These values are given in Tables G.3 and G.4, respectively. Those
tables give both the floating point and fixed point representations for the values. The fixed point representations are in
Q11 format. The floating point pseudo-codeiis:

GSTATE(1) = LOGGAIN + GCBLG(IG) + SHAPELG(IS)
If GSTATE(L) < -32., set GSTATE(1) = -32.

The fixed point pseudo-code follows.

AAO0=LOGGAIN << 7 | Align decimal points at
AA0=AAOQ + (GCBLG(IG) << 5) | boundary between the high and
AAO0 =AAO0 + (SHAPELG(IS) << 5) | low words of the accumulator
AA0=AA0>>7 | Right shift back to Q9 format
IF AAO < —16384, set AAO =-16384 | Check lower limit

GSTATE(1) = AAO0 | Lower 16-bit word saved

G.3.17 Block 49 —Hybrid window module for synthesisfilter

We begin with the floating point pseudo-code for the hybrid windowing module.

N1 =LPC + NFRSZ | Compute some constants (can be
N2 =LPC + NONR | precomputed and stored in memory)
N3 =LPC + NFRSZ + NONR

For N=1,2, .., N2, dothenextline

SB(N) = SB(N + NFRSZ) | Shift the old signal buffer
For N=1, 2, .., NFRSZ, dothe next line

SB(N2 + N) = STTMP(N) | Shift in the new signal

| SB(N3) isthe newest sample

K=1
For N=N3,N3-1, .., 3, 2,1, dothenext 2lines

WS(N) = SB(N) * WNR(K) | Multiply the window function

K=K+1

For 1=1,2,.. LPC+1, dothenext 4lines
TMP=0
For N=LPC+1,LPC+2, ..., N1, do the next line
TMP=TMP + WS(N) * WS(N + 1—1)
REXP(I) = (3/4) * REXP(I) + TMP | Update the recursive component

For 1=1,2,.., LPC+1, dothenext 3lines
RTMP(I) = REXP(l)
For N=N1+1,N1+2,..., N3, dothenextline
RTMP(1) = RTMP(I) + WS(N) * WS(N + 1 —1)
| Add the non-recursive component

RTMP(1) = RTMP(1) * WNCF | White noise correction

The fixed point pseudo-code for the hybrid windowing module (block 49) is much more complicated than the floating
point version. This is due to the specia handling of Segmental Block Floating Point (SBFL) format which is needed to
retain sufficient numerical precision.
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The STTMP array contains 4 quantized speech vectors of the previous adaptation cycle. When each of these 4 quantized
speech vector (the ST array) was computed, it was represented in 14-bit precision BFL format. The number of |eft shifts
(NLS) for the 4 quantized vectors will, in general, be different. For this reason, the STTMP array is said to be stored in
SBFL format since it is the concatenation of 4 BFL ST vectors. The SB array is the concatenation of 21 BFL ST vectors.
For this reason the SB array is stored in the same 14-hit precision SBFL format. For each of the 4 vectors composing
STTMP, there is an associated NLS value. These are stored in the array NLSSTTMP(). For the 21 vectors composing

SB, the NL S values are stored in the array NLSSB().

Next, we give the fixed point pseudo-code for the hybrid windowing module.

N1 = LPC + NFRSZ (= 70)

N2 = LPC + NONR (= 85)

N3 = LPC + NFRSZ + NONR (= 105)
N4 = N3/IDIM (= 21)

N5 = NFRSZ/IDIM (= 4)

N6 = N4 — N5 (= 17)

For N=1,2, ..., N2, dothenextline
SB(N) = SB(N + NFRSZ)

For N=1,2, .., N6, dothenextline
NLSSB(N) = NLSSB(N + N5)

For N=1,2, .., NFRSZ, do the next line
SB(N2 + N) = STTMP(N)

For N=1,2, .., N5, dothenextline
NLSSB(N6 + N) = NLSSTTMP(N)

NLSTMP = Min{NLSSB(1), NLSSB(2), ..., NLSSB(N4)}

K=1
N =N3
For J=1,2, ..., N4, dothe next 8 lines
NRSH =NLSSB(J) —-NLSTMP -1
For M =1, 2, ..., IDIM, do the next 6 lines
P =SB(K) * WNR(N)
If NRSH =-1, set AAO=P<<1
If NRSH > -1, set AAO =P >>NRSH
WS(K) = RND(AAO)
N=N-1
K=K+1

NLSATTS0=14

| Compute some constants (can be
| precomputed and stored in memory)

| Shift old part of buffer SB
| Shift old NLSSB
| Shift in new part of SB

| Shiftin new NLSSB

| Now find the minimum NLSSB,
| this determines NLSWS

| Now multiply SB by
| the hybrid window function

| =1 to compensate for Q15 multiplication

| WNR is Q15 multiplication

| Round upper word and storein WS

Call HWMCORE(LPC, N1, N3, NLSATTS50, WS, NLSTMP, REXP, NLSREXP, RTMP, ILLCOND)

NOTE - The following table lists al variables in this pseudo-code with their representation format and size for easy
reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed,
or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes which variables

were not included in the previous floating point pseudo-code (old/new).
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Variable Format Size Temp/perm Old/new
NLSSB integer 21 perm new
NLSREXP integer perm new
NLSSTTMP integer 4 perm new
NLSTMP integer temp new
NRSH integer 1 temp new
REXP BFL 51 perm old
RTMP BFL 51 perm old
SB SBFL 105 perm old
STTMP SBFL 20 perm old
WS BFL 105 temp old
BFL Block floating point
Integer 16-bit integer
SBFL 14-bit precision segmented block floating point
WS 14-bit precision BFL
REXP and RTMP 16-bit precision

G.3.18 HWMCORE - Core of hybrid window module

This module is used to complete the hybrid window calculation for blocks 36, 43 and 49. Each of those blocks has its
own initial portion. Variables are passed along from those blocks to this module. In order to avoid confusion, we have
renamed certain variables so that this pseudo-code does not use hames associated with any one of those three blocks. The

following table matches the names used in this module with the names used in blocks 36, 43 and 49.

Varigble Block 36 Block 43 Block 49
LPO LPCW (=10) LPCLG (=10) LPC (=50)
NLSATT NLSATTW NLSATTLG NLSATTS50
NLSRREC NLSREXPW NLSREXPLG NLSREXP
N1 30 14 70
N3 60 34 105
R R R RTMP
RREC REXPW REXPLG REXP

In addition to these variables, the scratch array WS and the corresponding number of shifts, NLSTMP, are also passed

from those blocks to this module.
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The following is the fixed point pseudo-code for this module.

SUBROUTINE HWMCORE(LPO, N1, N3, NLSATT, WS, NLSTMP, RREC, NLSRREC, R, ILLCOND)

NLSAAO=2* NLSTMP

AA0=0

For N=LPO+1, ..., N1, do the next 2 lines
P =WS(N) * WS(N)
AAO=AAO0+P

1f NLSRREC > NLSAAO, do the next 22 lines
AAO0O=AA0>>1
IR=NLSRREC —-NLSAAO+1
AA1=RREC(1) << NLSATT
AAl=-AA1 + (RREC(1) << 16)
AA1=AAl1>>IR
AAO0=AAO0+AAl
Call VSCALE(AAOQ, 1, 1, 30, AAO, NLSRE)
RREC(1) = RND(AAOQ)
NLSRREC = NLSAAO0 -1 + NLSRE
Forl =1, 2, ..., LPO, do the next 11 lines
AA0=0
For N=LPO+1, ..., N1, do the next 2 lines
P=WS(N) * WS(N —1)
AAO=AAO0+P
AAO0O=AA0>>1
AAl=RREC(l + 1) << NLSATT
AA1l=AAl + (RREC(I + 1) << 16)
AA1=AA1>>IR
AAO0=AAO0+AAl
AAO0=AAO0 << NLSRE
RREC(I + 1) = RND(AA0)
Goto FIN_RECUR

1f NLSRREC = NLSAAO, do the next 21 lines
AA1=RREC(1) << NLSATT
AAl=-AAl+ (RREC(1) << 16)
AAO=AA0>>1
AA1=AAl1>>1
AA0=AA0+AAl
Call VSCALE(AAOQ, 1, 1, 30, AAO, NLSRE)
RREC(1) = RND(AAQ)
NLSRREC = NLSRREC —1 + NLSRE
Forl =1, 2, ..., LPO, do the next 11 lines
AA0=0
For N=LPO+1, ..., N1, do the next 2 lines
P=WS(N) * WS(N —1)
AAO=AAQ0+P
AA0O=AA0>>1
AA1=RREC(l +1) << NLSATT
AA1=-AAl+ (RREC(l + 1) << 16)
AAl=AA1>>1
AA0=AA0+AAl
AAO0=AA0<<NLSRE
RREC(I + 1) = RND(AAD0)
Goto FIN_RECUR
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| Compute recursive part of RREC(1)
| WS has 2 bits of headroom

| AAO will have 5 bits of headroom
| for energy calculation

| Case 1: NLSRREC > NLSAAO

| This can be done by multiplication
| Scale RREC by attenuation factor
| Align AAO and AAL

| Find NLS for RREC

| Upper 16 bits of AA1 saved

| Compute recursive part of RREC(l + 1)

| Scale RREC by 3/4 or 1/2
I

| Upper 16 bits of AAO saved

| Case2: NLSRREC = NLSAAO

| Scale RREC by 3/4 or 1/2
|

| Find NLSfor RREC
| Upper 16 bits of AA1 saved

| Compute recursive part of RREC(I + 1)

| Scale RREC by 3/4 or 1/2
|

| Upper 16 bits of AAO saved



1f NLSRREC < NLSAAO, do the next 21 lines

IR=

NLSAAO-NLSRREC +1

AA0=AA0>>IR

AA1=RREC(1) << NLSATT
AAl=-AAl+ (RREC(1) << 16)
AAL1=AA1>>1

AA0=AA0+AAl

Call VSCALE(AAOQ, 1, 1, 30, AAO, NLSRE)
RREC(1) = RND(AAQ)

NLSRREC = NLSRREC —1 + NLSRE

Forl =1, 2, ..., LPO, do the next 11 lines

FIN_RECUR:

AA0=0

AA0=0

For N=LPO+1, ..., N1, do the next 2 lines
P=WS(N) * WS(N —1)
AAO=AA0+P

AA0=AA0>>IR

AA1=RREC(l + 1) << NLSATT

AA1=-AAl+ (RREC(l + 1) << 16)

AAl=AA1>>1

AA0=AA0+AAl

AAO0=AA0<<NLSRE

RREC(I + 1) = RND(AA0)

For N=N1+1, ..., N3, do the next 2 lines
P =WS(N) * WS(N)
AAO=AAQ0+P

If NLSRREC > NLSAAO, do the next 21 lines
IR=NLSRREC-NLSAAO0+1
AA1=RREC(1) << 16
AA1=AA1>>IR
AAO=AA0>>1
AA1=AA0+AAl
AAO=AA1>>8
AA1=AAl1+AA0
Call VSCALE(AAL, 1, 1, 30, AAL, NLSRR)
R(1) = RND(AAL)

Forl =1, 2, ..., LPO, do the next 10 lines
AA0=0
For N=N1+1, ..., N3, do the next 2 lines

P=WS(N) * WS(N —1)
AAO=AAQ +P

AAO=AA0>>1

AA1=RREC(I +1) << 16

AA1=AA1>>|R

AA1=AA0+AAl

AA1=AAl1<<NLSRR

R(l + 1) =RND(AA1)
Goto END

| Case3: NLSRREC < NLSAAO

| Scale RREC by 3 /4 or 1/2
|

| Upper 16 bits of AA1 saved

| Compute recursive part of RREC(I + 1)

| Scale RREC by 3/4 or 1/2
|

| Upper 16 bits of AAO saved

| When you reach this point the
| recursive component has been computed

| Compute non-recursive part of R(1)

| Case1: NLSRREC > NLSAAO

| Apply white noise correction factor

| Upper 16 bits of AA1 saved

| Compute non-recursive part of R(l + 1)

| Save upper 16 bits
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| Case2: NLSRREC = NLSAAO
1f NLSRREC = NLSAAO, do the next 18 lines

AAO0=AA0>>1

AA1=RREC(1) << 15 | Thiscan be done by multiplication
AA1=AA0+AAl

AAO0=AA1>>8 | Apply white noise correction factor

AA1=AAl1+AAO0
Call VSCALE(AAL, 1, 1, 30, AAL, NLSRR)

R(1) = RND(AA1) | Upper 16 bits of AA1 saved
Forl=1,2, .., LPO, dothenext 9 lines
AA0=0 | Compute non-recursive part of R(l + 1)

For N=N1+1, ..., N3, do the next 2 lines
P=WS(N) * WS(N —1)
AA0O=AAO0+P
AA0=AA0>>1
AA1=RREC(l +1) << 15
AA1=AA0+AAl
AA1=AAl1<<NLSRR
R(l + 1) =RND(AA1) | Save upper 16 bits
Goto END

| Case3: NLSRREC < NLSAAO
If NLSRREC < NLSAAQ, do the next 18 lines
IR=NLSAAO-NLSRREC +1
AAO0=AA0>>IR

AA1=RREC(1) << 15 | Thiscan be done by multiplication
AA1=AAQ0+AAl
AAO0=AA1>>8 | Apply white noise correction factor

AA1=AAl1+AAO0
Call VSCALE(AAL, 1, 1, 30, AAL, NLSRR)

R(1) = RND(AA1) | Upper 16 bits of AA1 saved
Forl=1,2, .., LPO, dothenext 9 lines
AA0=0 | Compute non-recursive part of R(l + 1)

For N=N1+1, ..., N3, do the next 2 lines
P=WS(N) * WS(N —1)
AAO=AAQ0+P

AA0=AA0>>IR

AA1=RREC(I +1) << 15

AA1=AA0+AAl

AA1=AA1l<<NLSRR

R(l + 1) =RND(AA1) | Save upper 16 bits
END: | Onelast job, check for ill-conditioning
ILLCOND = .FALSE.
If AA1=0, set ILLCOND =.TRUE | AA1 still contains 32 bit R(LPO + 1)

NOTE - The following table lists al variables in this pseudo-code with their representation format and size for easy
reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed,
or permanent (perm), meaning that the value will be needed after the current calculation as well. The table aso notes which variables
were not included in the previous floating point pseudo-code (old/new).
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Variable Format Size Temp/perm Old/new
NLSRE integer 1 temp new
NLSRR integer 1 temp new
NLSRREC integer 1 perm new
NLSTMP integer 1 temp new
RREC BFL 51 perm old
R BFL 51 perm old
WS BFL 105 temp old
BFL Block floating point
Integer 16-bit integer
SBFL 14-bit precision segmented block floating point
WS 14-bit precision BFL
RREC and R 16-bit precision
RREC Represents either REXP, REXPW or REXPLG, depending on whether this moduleis called from block 49, 36 or 43

G.3.19 Block 51 —Bandwidth expansion module

Thisisthe floating point pseudo-code for block 51, the bandwidth expansion module. A similar code aso exists for block
45 for the log gain linear predictor bandwidth expansion module. In that instance a different table is used and the number
of filter coefficientsis greater.

Forl=2,3, ..., LPC + 1, do the next line
ATMP(l) = FACV(l) * ATMP(l) | Scale coefficients

Wait until ICOUNT = 3, then
for1 =2, 3, ..., LPC + 1, do the next line
A(l) = ATMP(1)

The tables for FACV are given in Q14 format for the other bandwidth expansion coefficients. The values for the input
ATMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed point Levinson-Durbin
recursion module, NLSATMP is given by the Levinson-Durbin recursion module to indicate which format is used
for ATMP. After the multiplication FACV(I) * ATMP(]) the corresponding amount of left shifts are required.

The final values for ATMP are always represented in Q14 format. Empirically, the values of ATMP have never been too
large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to be prepared to
handle the unlikely event of Q14 overflow at the output of the bandwidth expansion module. In the pseudo-code below,
we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to the Levinson-Durbin
recursion modules - we do not update the predictor coefficients and keep using the old coefficients of the previous
adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with aflag to signa the filtering modules which
of the two possible Q formats are used. However, this will unnecessarily increase the complexity of the DSP code and the
execution time. Since Q14 overflow was never observed at the output of bandwidth expansion modules, a ssimple safety
check as implemented below suffices.
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Thisisthe fixed point pseudo-code for block 51.

If ICOUNT * 3, skip the following
Otherwise, do the following.
| First check to seeif ILLCOND istrue
If ILLCOND =.TRUE., skip the execution of this block
Otherwise, do the following
ATMP(1) = 16384
Forl1=2,3,4,.., LPC+1,dothenext6lines

AAO0=FACV(l) * ATMP(I) | AAOisQ27, Q28 or Q29

If NLSATMP =13, AAO=AA0<<3 | Make AAO Q30 for all 3 cases by
If NLSATMP =14, AAO = AA0<<?2 | appropriate number of shifts

If NLSATMP =15, AA0=AA0<<1

If AAO overflowed above, go to LABEL | If not true,

ATMP(l) = RND(AAO) | round to high word for ATMP

Forl=2,3, ..., LPC + 1, do the next line
A(l) = ATMP())

Exit this module

LABEL: | If program proceeds to here, we will have an
| overflow if wetry to represent A in Q14.
| Inthis case, do not update the synthesis filter
| coefficients (i.e. keep using
| the synthesisfilter coefficients from the previous
| adaptation cycle).

G.3.20 Blocks 71 and 72 —Long-term and short-term postfilters

Blocks 71 and 72 are combined in order to preserve the precision of the intermediate variable TEMP which was passed
between them in the floating point pseudo-code. The floating point pseudo-code for both of these blocksis given first.

ForK =1, 2, ..., IDIM, do the next line
TEMP(K) =GL * (ST(K) + B * ST(K —KP)) | Long-term postfiltering

For K =-NPWSZ -KPMAX + 1, ..., -2, -1, 0, do the next line
ST(K) = ST(K + IDIM) | Shift decoded speech buffer

ForK =1, 2, ..., IDIM, do thefollowing
TEMP = TEMP(K)
ForJ=10,9, ..., 3, 2, dothe next 2 lines

TEMP(K) = TEMP(K) + STPFFIR(J) * AZ(J+ 1) | All-zero part
STPFFIR(J) = STPFFIR(J— 1) | of thefilter
TEMP(K) = TEMP(K) + STPFFIR(1) * AZ(2) | Last multiplier

STPFFIR(1) = TMP

ForJ=10,9, ..., 3, 2, dothe next 2 lines

TEMP(K) = TEMP(K) — STPFIIR(J) * AP(J + 1) | All-pole part
STPFIIR(J) = STPFIIR(J- 1) | of the filter
TEMP(K) = TEMP(K) — STPFIIR(1) * AP(2) | Last multiplier
STPFIIR(1) = TEMP(K)
TEMP(K) = TEMP(K) + STPFIIR(2) * TILTZ | Spectral tilt

| compensation filter
The fixed point pseudo-code is given by the following. The variables STPFFIR and STPFIIR are in Q2 throughout.

ForK =1, 2, ..., IDIM, do the following indented lines
| First do long-term postfilter
AAO0=GL * SST(K) | GL isQ14, SST(1:5) isQ2
AA0=AA0+GLB * SST(K —KP) | GLB isQ16, SST(-239:0) isQ0
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AA1=AA0 | Next do short-term postfilter
| Perform FIR part of filter
ForJ=10,9, ..., 3, 2, dothenext 2 lines
AA1=AAl+STPFFIR(J) * AZ(J+1) | AZisQ14, STPFFIR(J) isQ2
STPFFIR(J) = STPFFIR(J-1)
AA1=AAl+STPFFIR(1) * AZ(2)
AA0O=AA0<<2
STPFFIR(1) = RND(AAOQ) | Q2for STPFFIR

| Now perform IIR part of filter
ForJ=10,9, ..., 3, 2, do the next 2 lines
AA1=AA1-STPFIR() * APJ+1) | APisQ14, STPFIIR(J) isQ2
STPFIIR(J) = STPFIIR(J- 1)
AALl=AA1-STPFIR(1) * AP(2)

AA0=AA0>>14
| Now check for saturation
If AAO > 32767, set AAO = 32767
If AAO <-32768, set AAO =-32768
STPFIIR(1) = AAO

| Now do spectral compensation
| tilt filter

AA1=AAL+ STPFIIR(2) * TILTZ | TILTZ isQ14
AAL=AAL>>14

If AAL > 32767, set AAL = 32767

If AAL <-32768, set AAL = 32768

TEMP(K) = AA1

| Now shift the long-term postfilter
| memory buffer
For K =-NPWSZ —KPMAX +1, ..., —7, -6, -5, do the next line

SST(K) = SST(K +1DIM) | Shift decoded
| speech buffer
For K =4, -3, ..., 0, do the next line
SST(K) = SST(K +IDIM) >>2 | Shift decoded speech buffer
| and change from Q2 to QO

G.3.21 Blocks 73 and 74 — Sum of absolute value calculators

Blocks 73 and 74 are quite similar. Their results are kept in double precision. As indicated here, these results need not be
stored before block 75. The floating point pseudo-code for block 73 is given by the following. Note that we have
substituted the name SST for the variable ST in floating point code here. This is to keep consistency between this code
and the fixed point code presented below.

Recall that SST(1.5) is represented in Q2.

SUMUNFIL =0
ForK =1, 2, ..., IDIM, do the next line
SUMUNFIL = SUMUNFIL +| SST(K) |

The pseudo-code for block 74 is given by the following.

SUMFIL =0
ForK =1, 2, ..., IDIM, do the next line
SUMFIL = SUMFIL + absolute value of TEMP(K)
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The fixed point pseudo-code for these two blocks is given by the following.

AA1=0
AA0=0
ForK =1, 2, ..., IDIM, do the next 2 lines
AAO0=AAOQ + | SST(K) | | Add absolute value of SST(K)
AA1=AAL+|TEMP(K) | | Add absolute value of TEMP(K)
| AAO = SUMUNFIL
| AA1=SUMFIL
| SST and TEMP are Q2, so
| AAOand AAl areaso Q2

| AAOand AA1 will be used in block 75

G.3.22 Block 75— Scaling factor calculator

Block 75 calculates the ratio of SUMUNFIL/SUMFIL and the result is stored in SCALE in NLSSCALE precision.
SUMUNFIL(AAQ) and SUMFIL(AA1) come from blocks 73 and 74, respectively. The floating point-pseudo-code is
given by the following.

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL
Otherwise, set SCALE=1

The fixed point pseudo-code is given by the following.

If AA1 > 4, do the following indented lines
Call VSCALE(AAL, 1,1, 30, AA1, NLSDEN)
DEN = RND(AAL)
Call VSCALE(AAOQ, 1, 1, 30, AAO, NLSNUM)
NUM = RND(AAOQ) | NLSNUM and NLSDEN are both off by
| 16 which cancels out
Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, SCALE, NLSSCALE)
Otherwise, set SCALE = 16384 and NLSSCALE =14

G.3.23 Block 76 — First-order lowpassfilter and block 77 — Output gain scaling unit
The floating point pseudo-code for these two blocks is given by the following.

ForK =1, 2, ..., IDIM, do the following
SCALEFIL = AGCFAC * SCALEFIL + (1-AGCFAC) * SCALE | Lowpassfiltering
SPF(K) = SCALEFIL * TEMP(K) | Scale output

In the fixed point pseudo-code, the second term is computed once and then added in each iteration in order to save both
the subtraction and the multiplication inside the loop. The fixed point pseudo-code is given by the following.

AA1=AGCFAC1* SCALE | AGCFAC1 =20972 in Q21 =0.010000228
NRS=NLSSCALE -14 + (21— 14) | Compute right shift

If NRS3 0, AA1=AA1>>NRS | Want AA1 to be Q28

If NRS<0,AAL1=AA1<<-NRS | Left shiftif NRSis negative

ForK =1, 2, ..., IDIM, do the following
| Lowpass filtering

AAO0=AA1+ AGCFAC* SCALEFIL | AGCFAC =16220 in Q14 and SCALEFIL
| isQ14

AAO0=AAO0<<2 | Make SCALEFIL Q14

SCALEFIL = RND(AAQ)
| Scale output

AAO = SCALEFIL * TEMP(K) | TEMP(K) is Q2

AAO0=AAO0<<2

SPF(K) = RND(AA0) | SPF(K) isQ2
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G.3.24 Block 81 —10th order LPC inversefilter
Thisisthe floating point version of the pseudo-code for block 81, the 10th order LPC inverse filter.
If IP=NPWSZ, then set IP = NPWSZ — NFRSZ | Check and update IP

For K=1,2, ..., DIM, dothenext 7 lines
ITMP=IP+K
D(ITMP) = ST(K)
ForJ=10,9, ..., 3, 2, dothe next 2 lines

D(ITMP) =D(ITMP) + STLPCI(J) * APF(J + 1) | FIR filtering
STLPCI(J) = STLPCI(J-1) | Shiftininput
D(ITMP) = D(ITMP) + STLPCI(1) * APF(2) | Handlelast one
STLPCI(1) = ST(K) | Shiftininput
IP=IP+IDIM | Update IP

In the fixed code, we first need to convert ST from block floating point to fixed Q2 format, then write the Q2 version of
ST to the long-term postfilter memory buffer, SST, for use later by the long-term postfilter. Note that this buffer was
previously labelled ST in the floating point pseudo-code. ST is block floating point and the memory buffer is Q2. In
order to avoid confusion, it was necessary to rename the memory buffer SST. We then compute the LPC inverse filter.
Note that the coefficients for the LPC filter, APF, are represented in Q13.

NLS=16—-NLSST +2 | Compute left shift amount for Q2
ForK =1, 2, ..., IDIM, do the next 2 lines
AAO0=ST(K) << NLS

SST(K) = RND(AAQ) | SST isnew long-term
| postfilter buffer
If IP = NPWSZ, then set IP = NFRSZ | Check and update IP

| Start LPC inversefiltering
ForK =1, 2, ..., IDIM, do the next 10 lines

AAOQ = SST(K)
AA0=AA0<<13
ForJ=10,9, ..., 3, 2, do the next 2 lines

AAO0=AAQ0+STLPCI(J) * APF(J+ 1)

STLPCI(J) =STLPCI(J-1)
AAO0=AAQ0+ STLPCI(1) * APF(2)
STLPCI(1) = SST(K)
ITMP=IP+K
AA0=AA0<<2
D(ITMP) = RND(AAQ) | DUITMP) isin Q1

IP=IP+IDIM
G.3.25 Block 82— Pitch period extraction module
We begin with the floating point version of the pseudo-code for block 82, the pitch period extraction module.

IFICOUNT * 3, skip the execution of this block
Otherwise, do the following
| Lowpass filtering and 4:1 downsampling

For K = NPWSZ —NFRSZ + 1, ..., NPWSZ, do the next 7 lines

TMP =D(K) — STLPF(1) * AL(1) — STLPF(2) * AL(2) — STLPF(3) * AL(3) | IR filter
If K isdivisible by 4, do the next 2 lines
N =K/4 | Do FIR filtering only if needed

DEC(N) = TEMP * BL(1) + STLPF(1) * BL(2) + STLPF(2) * BL(3) + STLPF(3) * BL(4)
STLPF(3) = STLPF(2)

STLPF(2) = STLPF(1) | Shift lowpass filter memory
STLPF(1) = TMP
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LABEL:

52

M1 = KPMIN/4
M2 = KPMAX/4
CORMAX = most negative number of the machine
For J=M1, M1+ 1, ..., M2, do the next 6 lines
TMP=0
For N =1, 2, ..., NPWSZ/4, do the next line
TMP=TMP + DEC(N) * DEC(N - J)
If TMP > CORMAX, do the next 2 lines
CORMAX =TMP
KMAX =]

| Start correlation peak-picking
| inthe decimated LPC residua domain

| TMP = correlation in decimated domain

| Find maximun correlation
| and the corresponding lag

ForN=-M2+1,-M2+2, ..., (NPWSZ — NFRSZ)/4, do the next line

DEC(N) = DEC(N + IDIM)

M1=4* KMAX -3

M2=4* KMAX +3

If M1 < KPMIN, set M1 = KPMIN

If M2 > KPMAX, set M2 = KPMAX

CORMAX = most negative number of the machine

ForJ=M1, M1 +1, ..., M2, do the next 6 lines
TMP=0
ForK =1, 2, ..., NPWSZ, do the next line
TMP=TMP + D(K) * D(K —J)
If TMP > CORMAX, do the next 2 lines
CORMAX =TMP
KP=1J

M1 =KP1-KPDELTA
M2 =KP1 + KPDELTA
If KP<M2+1,goto LABEL
If M1 <KPMIN, set M1 = KPMIN
CMAX = most negative number of the machine
ForJ=M1, M1 +1, ..., M2, do the next 6 lines
TMP=0
ForK =1, 2, ..., NPWSZ, do the next line
TMP=TMP + D(K) * D(K —J)
If TMP >CMAX, do the next 2 lines
CMAX =TMP
KPTMP=1J
SUM =0
TMP=0
ForK =1, 2, ..., NPWSZ, do the next 2 lines
SUM =SUM +D(K —KP) * D(K —KP)

| Shift decimated LPC residual buffer

| Start correlation peak-picking
| in undecimated domain

| Check whether M1 out of range
| Check whether M2 out of range

| Correlation in undecimated domain

| Find maximum correlation
| and the corresponding lag

| Determine the range of search around
| the pitch period of previous frame

| KP cannot be amultiple pitch if true

| Check whether M1 out of range

| Correlation in undecimated domain

| Find maximum correlation
| and the corresponding lag

| Start computing the tap weights

TMP= TMP + D(K —KPTMP) * D(K — KPTMP)
If SUM =0, set TAP = 0; otherwise, set TAP = CORMAX/SUM
If TMP = 0., set TAP1 = 0.; otherwise, set TAP1 = CMAX/TMP

If TAP>1,set TAP=1 | Clamp TAP between 0 and 1
If TAP<0, set TAP=0
If TAPL1>1,set TAP1=1 | Clamp TAP1 between 0 and 1

If TAP1<0, set TAP1=0
| Replace KP with fundamental pitch
| if s TAP1 TAP1 islarge enough

If TAPL>TAPTH * TAP, then set KP = KPTMP

KP1=KP | Update pitch period of previous frame
For K =—KPMAX + 1, - KPMAX + 2, ..., NPWSZ — NFRSZ, do the next line
D(K) =D(K + NFRSZ) | Shift the LPC residual buffer
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If ICOUNT * 3, skip the execution of this block
Otherwise, do the following

For K = NPWSZ —NFRSZ + 1, ..., NPWSZ, do the next 17 lines

AAOQ =D(K) * BL(0)

AAO0=AAO + LPFFIR(1) * BL(1)
AAO0 = AAO + LPFFIR(2) * BL(2)
AAO0=AAO + LPFFIR(3) * BL(3)
LPFFIR(3) = LPFFIR(2)
LPFFIR(2) = LPFFIR(1)
LPFFIR(1) = D(K)
AA0=AA0>>6
AAO0=AAO0—-LPFIIR(1) * AL(1)
AAO0=AAO0-LPFIIR(2) * AL(2)
AAO0 =AAO0—LPFIIR(3) * AL(3)
LPFIIR(3) = LPFIIR(2)
LPFIIR(2) = LPFIIR(1)
AA0=AA0<<3

LPFIIR(1) = RND(AAQ)
N=(K>>2)

If K = (N << 2), set DEC(N) = LPFIIR(1)

M1 =KPMIN/4
M2 = KPMAX/4
AA1 =-2147483648

ForJ=M1, M1 +1, ..., M2, do the next 6 lines
AA0=0

For N =1, 2, ..., NPWSZ/4, do the next line

AAO0 =AAO0 + DEC(N) * DEC(N -J)
If AAO > AA1, dothe next 2 lines

AA1=AA0

KMAX =J

| First do the FIR part

| D(K)isQ1, BL()isQ19

| BL(0) = 18721, BL(1) =-3668
| BL(2) =-3668, BL(3) = 18721

| LPFFIRisQ1

| Now do the lIR part

| AL() are Q13, LPFIIR() are Q1
| AL(1) =—19172, AL(2) = 16481
| AL(3) =-5031

| LPFIIRisQ1
| DEC(N) isQ1
| Start correlation peak-picking

| inthe decimated LPC residual domain
| :_231

| Find maximum correlation and
| the corresponding lag

ForN=-M2+1,-M2+ 2, ..., (NPWSZ — NFRSZ)/4, do the next line

DEC(N) = DEC(N + IDIM)
M1=4* KMAX -3

M2=4* KMAX +3

If M1 <KPMIN, set M1 = KPMIN
If M2 > KPMAX, set M2 = KPMAX
AA1=-2147483648

ForJ=M1, M1 +1, ..., M2, do the next 6 lines
AA0=0
ForK =1, 2, ..., NPWSZ, do the next line
AA0=AA0+D(K)* DEC(K -J)
If AAO > AA1, do the next 2 lines
AA1=AA0
KP=1J
CORMAX =AA1l

M1 =KP1-KPDELTA

M2 =KP1 + KPDELTA

If KP<M2+1, goto LABEL

If M1 <KPMIN, set M1 = KPMIN
If M2 > KPMAX, set M2 = KPMAX

AA1=-2147483648

| Start correlation peak-picking
| in undecimated domain

| Check whether M1 out of range

| Check whether M2 out of range
| = _231

| Correlation in undecimated domain

| Double precision save to CORMAX

| Determine the range of search around
| the pitch period of the previous frame
| KP cannot be amultiple pitch if true

| Check whether M1 out of range

| Check whether M2 out of range

| Thislast statement is not

| in floating point

| :_231
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ForJ=M1, M1 +1, ..., M2, do the next 6 lines

AA0=0
ForK =1, 2, ..., NPWSZ, do the next line
AA0=AA0+D(K)* D(K —J) | Correlation in undecimated domain
If AAO > AA1, do the next 2 lines
AA1=AA0 | Find maximum correlation and
KPTMP=J | the corresponding lag
CMAX =AAl | Double precision save to CMAX
AA0=0
AA1=0

ForK =1, 2, ..., NPWSZ, do the next 2 lines
AAO = AAO + D(K —KP) * D(K —KP)
AAl=AA1l+D(K —KPTMP) * D(K — KPTMP)

| Find TAP
| Clip TAP weights if necessary
If AAO =0, set CORMAX =0
If AA1=0, set CMAX =0
If CORMAX > AAOQ, set CORMAX =AAO0
If CORMAX <0, set CORMAX =0
If CMAX > AAL, set CMAX = AAl
If CMAX <0, set CMAX =0

If AAO > AA1, do the next 2 lines
call VSCALE(AAO, 1, 1, 30, AAO, NLS)
AAl1=AAl1<<NLS

otherwise do the next 2 lines
cal VSCALE(AAL 1,1, 30, AAL NLS)
AAO0=AAO0<<NLS

SUM = AAOQ >> 16
TMP=AA1>>16
AAO0=CORMAX <<NLS
CORMAX =AA0>> 16
AAO0=CMAX <<NLS

CMAX =AA0>>16
AA1=CORMAX * TMP
AAl=AA1>>16

AA1=AAL1* ITAPTH | ITAPTH =26214in Q16
AAO0=CMAX * SUM

If AAO > AAL, set KP-—KPTMP

LABEL: KP1=KP | Update KP1 and shift LPC residual
For K =—KPMAX + 1, KPMAX + 2, ..., NPWSZ — NFRSZ, do the next line
D(K) =D(K + NFRSZ) | Shift the LPC residual buffer

G.3.26 Block 83— Pitch predictor tap calculator

We begin with the floating point version of the pseudo-code. Here we have used SST rather than ST for the name of the
long-term postfilter memory buffer.

If ICOUNT ? 3, skip the execution of this block

Otherwise, do the following

SUM =0

TMP=0

For K =—NPWSZ + 1, -NPWSZ + 2, ..., 0, do the next 2 lines
SUM = SUM + SST(K —KP) * SST(K —KP)
TMP=TMP + SST(K) * SST(K —KP)

If SUM =0, set PTAP = 0; otherwise, set PTAP = TMP/SUM
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The fixed point pseudo-code is given by the following. Note that SST() is 13 bit Q0. In performing the correlations, the
mulplication of SST by either itself or a delayed sample gives aresult which is 25 bit QO.

If ICOUNT ? 3, skip the execution of this block
Otherwise, do the following
AA0=0
AA1=0
For K =-NPWSZ + 1, -NPWSZ + 2, ..., 0, do the next 4 lines
P=SST(K —KP) * SST(K —KP)
AAO0O=AA0+P
P =SST(K) * SST(K —KP)
AA1=AA1+P

If AAO =0, set PTAP =0 and return to calling program
If AA1 £ 0, set PTAP =0 and return to calling program
If AA13 AAOQ, set PTAP = 16384 | NLSPTAP=14
Otherwise, do the following
Call VSCALE(AAQO, 1, 1, 30, AAO, NLSDEN)
Cal VSCALE(AAL, 1, 1, 30, AA1, NLSNUM)
NUM =RND(AA1)
DEN = RND(AAQ)
Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, PTAP, NLSPTAP)
NRS=NLSPTAP-14
PTAP=PTAP>>NRS | NLSPTAP=14

G.3.27 Block 84 —Long-term postfilter coefficient calculator

We begin with the floating point pseudo-code for block 84.

If ICOUNT t 3, skip the execution of this block
Otherwise, do the following
If PTAP>1, set PTAP=1 | Clamp PTAP at 1
If PTAP < PPFTH, set PTAP=0 | Turn off pitch postfilter
| if PTAP smaller than threshold

B = PPFZCF * PTAP
GL=1/(1+B)

This fixed point pseudo-code is given by the following. We define an additional variable GLB which is the product of GL
and B. This saves us later multiplications. B and GLB are output in Q16 and GL is output in Q14.

| Notethat PTAPis < 16385 from block 83
If ICOUNT * 3, skip the execution of this block
Otherwise, do the following

If PTAP < PPFTH, set PTAP=0 | PPFTH =9830in Q14

AAOQ = PPFZCF * PTAP | PPFZCF =9830in Q16, PTAPisin Q14

B =AA0>> 14 | SaveBin Q16

AAO0=AA0>>16 | AAO=BinQ14

AAO =AAO0 + 16384

DEN = AAO0 | DENisin Q14

Call DIVIDE(16384, 14, DEN, 14, GL, NLYS)

AAO0=GL * B | NLS=14o0r 15, NLSof B = 16

GLB =AA0>>NLS | GLBisGL * B and is precomputed here
| in Q16 for block 71

NRS=NLS-14

If NRS>0, SET GL =GL >>NRS | Make GL Q14
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G.3.28 Block 85— Short-term postfilter coefficient calculator

We begin with the floating point pseudo-code for this block.

If ICOUNT t 1, skip the execution of this block
Otherwise, do the following
Forl=2,3,..., 11, dothenext 2 lines

AP(l) = SPFPCFV(1) * APF(1) | Scale denominator coefficients
AZ(l) = SPFZCFV(I) * APF(I) | Scale numerator coefficients
TILTZ=TILTF* RC1 | Tilt compensation filter coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin’s recursion or
that the prediction coefficients could not even be expressed in Q13. (It has never been observed that Q13 was not
sufficient, but this possibility must still be considered.) The variable ILLCONDP is a flag from block 50 which indicates
whether the results of block 50 are valid or not. In Recommendation G.728, there is an implicit assumption that the
results of Durbin will not be used if ILLCONDP is true. That is, ATMP will not be copied to APF after the 10th order
recursion is completed. The same assumption is repeated here. If ILLCONDP is true, then we do not update AP, AZ
or TILTZ.

Next, we must deal with the fact that the coefficients APF() from Durbin's recursion may be in Q13, Q14 or Q15.
NLSAPF is the number of left shifts of APF. At the output, we also wish to save APF() in Q13 for later use in the LPC
inverse filtering operation. We want the numerator and denominator coefficients, AP() and AZ() to be in Q14 for the
output. TILTZ is output in Q14. It may be the case that AP cannot be represented in Q14. When this is the case, do not
update AP, AZ or TILTZ, but the new values for APF can be used. They should already be in Q13 format. The fixed
point pseudo-codeis given by the following.

If ICOUNT * 1, skip the execution of this block
Otherwise, do the following
| First check to seeif ILLCONDP istrue
If ILLCONDP = .TRUE., skip the execution of this block
otherwise, do the following
| Next do the denominator coefficients
| If they overflow for Q14, do not
| update AP, AZ or TILTZ
| Temporary array WSisused in case
| of overflow, so that AP is preserved
For | =2 and 3, do the next 6 lines

AAO = SPFPCFV(1) * APF(1) | SPFPCFV isQ14, AAOis 14 + NLSAPF
If NLSAPF =13, AAO=AA0<<3 | Make AAO Q30 for all 3 cases by
If NLSAPF =14, AAO=AA0<<?2 | appropriate number of shifts

If NLSAPF =15, AAO=AA0<<1
If AAO overflowed above, go to LABEL
WS(1) = RND(AAO) | Round to high word for WS
| Overflow can only occur for 2 and 3,
| so copy these to AP and continue
For | =2 and 3, do the next line

AP(I) =Wg(1)
| Now do the rest
For 1 =4,5, ..., 11, do the next 5 lines
AAO = SPFPCFV(I) * APF(I) | SPFPCFV isQ14, AAOis 14 + NLSAPF
If NLSAPF =13, AAO=AA0<<3 | Make AAO Q30 for all 3 cases by
If NLSAPF =14, AAO = AA0 << 2 | appropriate number of shifts
If NLSAPF =15, AAO=AAO0<<1
AP(l) = RND(AAO) | Round to high word for AP

| Now do the numerator coefficients
| If the denominator did not overflow,
| then the numerator cannot, either
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Forl=2,3,..., 11, dothenext 5lines

AAO = SPFZCFV(1) * APF(I) | SPFZCFV isQ14, AAOis 14 + NLSAPF
If NLSAPF =13, AAO=AA0<<3 | Make AAO Q30 for all 3 cases by

If NLSAPF =14, AAO=AA0<<2 | appropriate number of shifts

If NLSAPF =15, AAO=AA0<<1

AZ(l) = RND(AAOQ) | Round to high word for AZ

| Now update TILTZ
AAO=TILTF* RC1| TILTZ=4915in Q15

TILTZ = RND(AAOQ) | RC1isQ15
| TILTZisQ14
LABEL: | Save APF() in Q13 for LPC inverse
| filtering later

| Case1: NLSAPF = 13, do nothing

If NLSAPF = 14, do the next 3 lines | Case2: NLSAPF = 14, shift 15, round
Forl=2,3,4,...,11, dothenext 2 lines
AAO0 =APF(l) << 15
APF(I) = RND(AAQ)

If NLSAPF = 15, do the next 3 lines | Case 3: NLSAPF = 15, shift 14, round
Forl=2,3,4,..,11, dothenext 2 lines
AAO0 =APF(l) << 14
APF(I) = RND(AAQ)

Note that in the above code, the “For” loops containing three “1f NLSAPF = ...” statements can be eliminated if the entire
code is re-written for each of the three possible values of NLSAPF. This longer code will produce exactly the same
results, but will execute more quickly on most programmable devices.

G4 LD-CELP internal variable representations

In this subclause updated versions of Tables 1/G.728 and 2/G.728 are presented. Table G.1 is a shortened version of
Table 1/G.728. It lists only constants which are not inherently integers and are not given elsewhere in the Recommen-
dation. The Equivalent Symbol and Initial Vaue entries in Table 1/G.728 have been deleted in order to leave space for
the Fixed Point Format and representation required for each variable. Table G.2 is the integer version of Table 2/G.728.
The same column has also been deleted from Table 2/G.728 in order to present the fixed point format. Several new
variables are listed which relate only to the fixed point specification.

TABLE G.1/G.728

Basic coder parametersthat are not inherently integersand not given elsewhere

Nare | HE | et | Qroma Descipion
AGCFAC 0.99 16220 Q14 AGC adaptation speed controlling factor
AGCFACL1 0.01 20972 Q21 The value of (1 - AGCFAC)

GOFF 32 16384 Q9 Log-gain offset value

PPFTH 0.6 9830 Q14 Tap threshold for turning off pitch postfilter
PPFZCF 0.15 9830 Q16 Pitch postfilter zero controlling factor

TAPTH 0.4 26214 Q16 Tap threshold for fundamental pitch replacement
TILTF 0.15 4915 Q15 Spectral tilt compensation controlling factor
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TABLE G.2/G.728

LD-CELP internal processing variables

Name Arr%nlggex Fi)l(:%?nﬁ)g nt Description
A 1toLPC+1 Q14 Synthesisfilter coefficients
AL 1to3 Q13 1 kHz lowpass filter denominator coefficients
AP 1to11 Q14 Short-term postfilter denominator coefficients
APF 1toll Q13 10th-order LPC filter coefficients
ATMP ltoLPC+1 Q13/Q14/Q15 | Temporary buffer for synthesisfilter coefficients
AWP 1toLPCW +1 Q14 Perceptua weighting filter denominator coefficients
AWZ 1toLPCW +1 Q14 Perceptual weighting filter numerator coefficients
AWZTMP 1toLPCW +1 Q13/Q14/Q15 | Temporary buffer for weighting filter coefficients
AZ 1to11 Q14 Short-term postfilter numerator coefficients
B 1 Q16 Long-term postfilter coefficients
BL 1to4 Q19 1 kHz lowpass filter numerator coefficients
D —139 to 100 Q1 LPC prediction residual
DEC -341t0 25 Q1 4:1 decimated LPC prediction residual
ET 1toIDIM 15b BFL Gain-scaled excitation vector
FACV ltoLPC+1 Q14 Synthesis filter BW broadening vector
FACGPV 1toLPCLG+1 Q14 Gain predictor BW broadening vector
G2 1toNG Q12 2 times gain levelsin gain codebook
GAIN 1 SFL Linear excitation gain
GB 1toNG-1 Q13 Mid-point between adjacent gain levels
GL 1 Q14 Long-term postfilter scaling factor
GLB 1 Q16 Long-term postfilter product term
GP 1ltoLPCLG+1 Q14 Log-gain predictor coefficients,
initial value = 16384, —16384, 0, ..., 0
GPTMP 1toLPCLG+1 | Q13/Q14/Q15 | Temporary array for log-gain linear predictor coefficients
GQ 1toNG Q13 Gain levelsin the gain codebook
GSQ 1toNG Q11 Squares of gain levelsin gain codebook
GSTATE 1toLPCLG Q9 Log-gain predictor memory, initial value = -16384
GTMP 1lto4 Q9 Temporary log-gain buffer, initial value = -16384
H 1toIDIM Q13 Impul se response vector of F(z) W(z)
ICHAN 1 Q0 Best codebook index to be transmitted
ICOUNT 1 Qo0 Speech vector counter (indexed from 1 to 4)
1G 1 Qo0 Best 3-bit gain codebook index
ILLCOND 1 Qo0 I11-conditioning flag for synthesis filter
ILLCONDG 1 Qo0 I11-conditioning flag for log-gain predictor
ILLCONDP 1 Q0 I11-conditioning flag for postfilter
ILLCONDW 1 Q0 I11-conditioning flag for weighting filter
IP 1 Qo0 Address pointer to LPC prediction residual
IS 1 Qo0 Best 7-bit shape codebook index
KP 1 Qo0 Pitch period of the current frame
KP1 1 Qo0 Pitch period of the previous frame
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TABLE G.2/G.728 (continuation)

LD-CELP internal processing variables

Name Arr%nlggex Fi)l(:%?nﬁ)g nt Description
LOGGAIN 1 Q9 Log of excitation gain
LPFFIR 3 Q1 Lowpass filter FIR memory
LPFIIR 3 Q1 Lowpass filter IIR memory
NLSATMP 1 Qo0 Durbin’ s recursion precision flag for ATMP
NLSAWZTMP 1 Qo0 Durbin’srecursion precision flag for AWZTMP
NLSGPTMP 1 Qo0 Durbin’ s recursion precision flag for GPFTMP
NLSET 1 Qo0 NLSfor ET
NLSGAIN 1 Qo0 NLSfor linear GAIN
NLSREXP 1 Qo NLSfor REXP, initial value =31
NLSREXPLG 1 Qo0 NLSfor REXPLG, initial value = 31
NLSREXPW 1 Qo0 NLSfor REXPW, initia value =31
NLSSB 21 Qo0 NLSfor SB, initial value = 16
NLSST 1 Q0 NLS for ST in decoder
NLSSTATE 11 Qo0 NLSfor STATELPC, initial value = 16
NLSSTTMP 4 Qo0 NLSfor STTMP, initial value =16
PN 1toIDIM Q7 Correlation vector for codebook search
PTAP 1 Q14 Pitch predictor tap computed by block 83
R 1to11 BFL Autocorrelation coefficients
RC 1 Q15 Reflection coefficients
RC1 1 Q15 Temporary buffer for first reflection coefficients
REXP ltoLPC+1 BFL Recursive part of autocorrelation, synthesis filter
REXPLG 1toLPCLG+1 BFL Recursive part of autocorrelation, log-gain predictor
REXPW 1toLPCW +1 BFL Recursive part of autocorrelation, weighting filter
RTMP l1toLPC+1 BFL Temporary buffer for autocorrel ation coefficients
S 1toIDIM 15b Q2 Uniform PCM input speech vector
SB 1to 105 14b BFL Buffer for previously quantized speech
SBLG 1lto 34 Q9 Buffer for previous log-gain
SBW 1to 60 Q2 Buffer for previous input speech
SCALE 1 SFL Unfiltered postfilter scaling factor
SCALEFIL 1 Q14 Lowpass filtered postfilter scaling factor, initial value = 16384
SD 1toIDIM Qo0 Decoded speech buffer
SPF 1toIDIM Q2 Postfiltered speech vector
SPFPCFV lto1l Q14 Short-term postfilter pole controlling vector
SPFZCFV 1ltoll Q14 Short-term postfilter zero controlling vector
SO 1 byte A-law or mlaw PCM input speech sample
SST (past) -239t00 13b Q0 Quantized speech buffer
SST (current) 1toIDIM 15b Q2 Quantized speech buffer
ST 1toIDIM 14b BFL Quantized speech vector
STATELPC 1toLPC 14b SBFL Synthesis filter memory
STLPCI 1t010 Q2 LPC inverse filter memory
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TABLE G.2/G.728 (end)

LD-CELP internal processing variables

Name Arz%qlggex H )l(:?)?nljgtl nt Description
STMP 1to4* IDIM 15b Q2 Buffer for perceptual weighting filter hybrid window
STTMP 1to4* IDIM 14b SBFL Buffer for synthesis filter hybrid window
STPFFIR 1to 10 Q2 Short-term postfilter memory, all-zero section
STPHIR 1to 10 Q2 Short-term postfilter memory, all-pole section
SU 1 Q2 Uniform PCM input speech sample
SUMFIL 1 Q2 Sum of absolute value of postfiltered speech
SUMUNFIL 1 Q2 Sum of absolute value of decoded speech
SW 1toIDIM Q2 Perceptually weighted speech vector
TARGET 1to IDIM BFL (Gain-normalized) VQ target vector
TEMP 1toIDIM * Scratch array for temporary working space
TILTZ 1 Q14 Short-term postfilter tilt-compensation coefficient
WFIR 1to LPCW Q2 Memory of weighting filter 4, al-zero portion
WIIR 1to LPCW Q2 Memory of weighting filter 4, al-pole portion
WNR 1t0105 Q15 Window function for synthesisfilter
WNRLG lto 34 Q15 Window function for log-gain predictor
WNRW 1to60 Q15 Window function for weighting filter
WPCFV 1toLPCW +1 Q14 Perceptual weighting filter pole controlling vector
WS 1to 105 # Work Space array for intermediate variables
WZCFV 1toLPCW +1 Q14 Perceptual weighting filter zero controlling vector
Y 1to IDIM * NCWD Q11 Shape codebook array
Y2 1to NCWD Q5 Energy of convolved shape codevector
ZIR 1toIDIM 15b Q2 Zero input response
ZIRWFIR 1to LPCW 15b Q2 Memory of weighting filter 10, all-zero portion
ZIRWIIR 1to LPCW 15b Q2 Memory of weighting filter 10, all-pole portion
SFL Scalar floating point
BFL Block floating point
SBFL Segmented block floating point
Qx Qx format
14borl5b Indicates 14- or 15-hit precision, al others are assumed full 16-bit precision
# Defined by use, can be BFL or fixed Q, since it is scratch memory

* TEMP isatemporary working array and is used in several blocks; its Q format may change from block to block.

G.5 L og-gain tablesfor gain and shape codebook vectors

See Tables G.3 and G.4.
TABLE G.3/G.728
Floating point gain in dB and Q11 fixed point representation
for gain codebook vectors
Index dB Fixed point

0 4 -5.7534180 -11783

1 5 -0.8925781 -1828

2 6 3.9682620 8127

3 7 8.8291020 18082
NOTE — To obtain the fixed point value, multiply the floating point value by 2048 = 211,
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TABLE G.4/G.728

Floating point gain in dB and Q11 fixed point representation
for shape codebook vectors

Index dB Fixed point Index dB Fixed point Index dB Fixed point
0 —-0.1108398 —227 43 1.1064450 2266 85 1.7133790 3509
1 5.0332030 10308 44 7.0932620 14527 86 0.4252930 871
2 3.1977540 6549 45 9.1738280 18788 87 1.0693360 2190
3 3.7856450 7753 46 6.3623050 13030 88 2.7080080 5546
4 3.7094730 7597 47 3.0458980 6238 89 7.4887700 15337
5 8.0874020 16563 48 0.8911133 1825 90 1.8105470 3708
6 3.1279300 6406 49 4.4384770 9090 91 1.1748050 2406
7 5.8266600 11933 50 0.1030273 211 92 2.8076170 5750
8 6.6254880 13569 51 0.9218750 1888 93 3.6806640 7538
9 5.1606450 10569 52 8.8320310 18088 9 1.9101560 3912

10 7.9726560 16328 53 11.0141600 22557 95 1.7299800 3543
11 3.1914060 6536 54 5.3188480 10893 9% —4.9335940 -10104
12 7.7163090 15803 55 8.8652340 18156 97 0.1479492 303
13 5.6997070 11673 56 1.6728520 3426 98 —-3.0083010 —6161
14 10.4091800 21318 57 6.5429690 13400 99 —0.5576172 -1142
15 4.4433590 9100 58 —2.1362300 4375 100 1.8881840 3867
16 5.9790040 12245 59 3.8916020 7970 101 2.8979490 5935
17 5.8681640 12018 60 3.7861330 7754 102 —-3.5161130 —7201
18 1.2221680 2503 61 12.3388700 25270 103 —0.3706055 759
19 7.1728520 14690 62 2.5942380 5313 104 —-1.0219730 —2093
20 8.8818360 18190 63 7.6245120 15615 105 —1.3979490 —2863
21 14.0629900 28801 64 —-3.0742190 —6296 106 1.0825200 2217
22 8.2045900 16803 65 2.2021480 4510 107 —1.5834960 -3243
23 9.9272460 20331 66 1.0751950 2202 108 3.0083010 6161
24 8.7983400 18019 67 —3.5297850 —7229 109 2.8579100 5853
25 12.1679700 24920 68 1.5361330 3146 110 3.7104490 7599
26 7.8901370 16159 69 —1.3759770 —2818 111 3.2944340 6747
27 8.6025390 17618 70 —1.3056640 —2674 112 —0.9770508 —2001
28 11.2656300 23072 71 —-0.7651367 -1567 113 4.9892580 10218
29 13.7085000 28075 72 0.8989258 1841 114 —-0.0263672 54
30 9.3598630 19169 73 2.8334960 5803 115 0.9335938 1912
31 12.5600600 25723 74 3.8203130 7824 116 5.6127930 11495
32 4.2333980 8670 75 0.1557617 319 117 5.1635740 10575
33 4.9165040 10069 76 0.8862305 1815 118 2.2055660 4517
A 0.2456055 503 77 0.8618164 1765 119 2.0893550 4279
35 4.2221680 8647 78 3.3930660 6949 120 0.8852539 1813
36 5.4516600 11165 79 1.2128910 2484 121 0.2763672 566
37 9.0073240 18447 80 1.3710940 2808 122 2.2309570 4569
38 2.0820310 4264 81 4.7431640 9714 123 2.0278320 4153
39 8.4868160 17381 82 —2.0581050 -4215 124 1.6445310 3368
40 1.7241210 3531 83 3.2607420 6678 125 5.4584960 11179
411 5.1479490 10543 84 1.2861330 2634 126 0.8271484 1694
42 —1.1679690 —2392 127 0.3715820 761

NOTE — To obtain the fixed point value, multiply the floating point value by 2048 = 211,
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G.6 Integer values of gain codebook related arrays

This subclause includes the equivaent integer values for the floating point table given in Annex B/G.728 (see Table G.5).

TABLE G.5/G.728

Integer values of gain codebook related arrays

Array index 1 2 3 4 5 6 7 8
GQ (Q13) 4224 7392 12936 22638 —4224 —7392 —12936 —22638
GB (Q13) 5808 10164 17787 * -5808 -10164 -17787 *
G2(Q12) 4224 7392 12936 22638 —4224 —7392 —12936 —22638
GSQ (Q11) 545 1668 5107 15640 545 1668 5107 15640
* Can be any arbitrary value (not used).

G.7 Encoder and decoder main program pseudo-codes

This subclause gives the pseudo-codes for the encoder main program and the decoder main program. The main purposeis
to show the order in which various blocks are executed. Therefore, only the block execution sequence is shown and no
low-level detail of parameter passing is described. Note that the allowable sequence of execution is not unique. There are
many different orders of execution which al achieve bit-exact result. The pseudo-codes shown below are just
two examples. However, if adifferent order of block execution is used, the implementer should make sure it gets bit-exact
results.

The pseudo-code for the encoder main program is now given below.
Initialize all encoder variablesto their initial values.
Initialize y2( ) by executing blocks 14 and 15 with h =[8192, 0, 0, O, O]

ILLCOND =.FALSE.
ILLCONDW = .FALSE.
ILLCONDG = .FALSE.

ICOUNT =0

VEC_LOOP:
If ICOUNT =4, set ICOUNT =0 | Reset vector counter
ICOUNT = ICOUNT +1 | Update vector counter

Get one vector of input speech from the input buffer
Convert input speech vector to the range [-16384, +16383],
then assign to () | Q2 representation of [-4096, +4095.75]

| Check whether to update
| filter coefficients
If ICOUNT = 3, do the next 4 lines
If ILLCOND = .FALSE., do block 51
If ILLCONDW = .FALSE., do block 38
do block 12
do blocks 14 and 15

If ICOUNT =2 and ILLCONDG = .FALSE., then do block 45

| Start once-per-vector processing
do blocks 46, 98, 99, and 48 | Get backward-adapted gain
| GSTATE(1:9) shifted down 1 position
do “blockzir” (blocks 9 and 10 during zero-input response cal cul ation)
do block 4 | Perceptual weighting filter
do block 11 | VQ target vector computation
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do block 16

do block 13

do blocks 17 and 18

put out ICHAN to the communication channel
do blocks 19 and 21

do blocks 9 and 10 during filter memory update
do blocks 93, 94, 96, and 97

| VQ target vector normalization
| Time-reversed convolution
| Excitation codebook search

| Scale selected excitation codevector
| Get ()

| Update log-gain; note that the

| 3 delay unitsin the gain adapter just
| happen naturally in the looping

| process and need not be

| implemented explicitly

GSTATE(2) = output of block 97 | Update gain predictor memory

| = (ICOUNT =1) * IDIM | | = starting address of STTMP()
copy ST(1:5) to STTMP(l + 1:l +5) | Update STTMP()
NLSSTTMP(ICOUNT) = NLSST

I = (ICOUNT —3) * IDIM

If ICOUNT <3,setl=1+20 | 1 =starting address of STMP()
copy S(1:5) to STMP(I + 1:1 +5) | Update STMP()

| End of once-per-vector processing

| Start once-per-frame processing
If ICOUNT =4, do the next 2 lines
do block 49 | Output ill-condition flag = ILLCOND
do block 50 | Output predictor coefficients = ATMP()
| Output ill-condition flag = ILLCOND
If ICOUNT = 2, do the next 2 lines
do block 36 | Output ill-condition flag = ILLCONDW
do block 37 | Output predictor coefficients = ATMP()
| Output ill-condition flag = ILLCONDW
If ICOUNT =1, do the next 6 lines
GTMP(1) = GSTATE(4)
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)
do block 43 | Output ill-condition flag = ILLCONDG
do block 44 | Output predictor coefficients = GPTMP()
| Output ill-condition flag = ILLCONDG
| End of once-per-frame processing

| Update GTMP()in the one shot

Goto VEC _LOOP

Next, the pseudo-code for the decoder main program is given below. Again, only the block execution sequence is shown

and no low-level detail of parameter passing is described.

Initialize all decoder variablesto their initial values.

ILLCOND =.FALSE.
ILLCONDG = .FALSE.
ILLCONDP = .FALSE.
ICOUNT =0

VEC_LOOP:
If ICOUNT =4, set ICOUNT =0
ICOUNT =ICOUNT +1
Get ICHAN of the current vector from the input buffer
Obtain the shape index IS and gain index 1G from ICHAN

| Reset vector counter
| Udate vector counter

| Check whether to update
| filter coefficients
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If ICOUNT =3, do the next line
If ILLCOND = .FALSE., do block 51

If ICOUNT =2 and ILLCONDG = .FALSE., then do block 45

do blocks 46, 98, 99, and 48

do blocks 19 and 21
do block 32
If ICOUNT =1, do block 85
do block 81
If ICOUNT =3, do the next 3 lines
do block 82
do block 83
do block 84
do block 71
do block 72
do blocks 73 and 74
do block 75
do block 76
do block 77

do blocks 93, 94, 96, and 97

GSTATE(1) = output of block 97

| =(ICOUNT —1) * IDIM

copy ST(1:5) to STTMP(I + 1.l +5)
NLSSTTMP(ICOUNT) = NLSST

If ICOUNT =4, do the next 5 lines
do block 49

do block 50, order 1 to 10

NLSAPF =NLSATMP
copy ATMP(2:11) to APF(2:11)
continue block 50, order 11 to 50

If ICOUNT =1, do the next 6 lines
GTMP(1) = GSTATE(4)
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)
do block 43
do block 44

Goto VEC_LOOP

64

Recommendation G.728 — Annex G

(11/94)

| Start once-per-vector processing

| Get backward-adapted gain

| GSTATE(1:9) shifted down 1 position
| Scale selected excitation codevector

| Update short-term postfilter coefficients

| Pitch period extraction

| Compute pitch predictor tap

| Update long-term postfilter coefficients
| Long-term postfilter

| Short-term postfilter

| Calculate sums of absolute values

| Ratio of sums of absolute values

| Low-pass filter of scaling factor

| Gain control of postfilter output

| Update log-gain; note that the

| 3 delay unitsin the gain adapter just
| happen naturally in the looping

| process and need not be

| implemented explicitly

| Update gain predictor memory

| 1 =starting address of STTMP()

| Update STTMP()

| End of once-per-vector processing

| Start once-per-frame processing

| Output ill-condition flag = ILLCOND

| Output predictor coefficients = ATMP()
| with NLSATMP

| Output ill-condition flag = ILLCONDP
| Save the 10th-order predictor

| for postfilter use later

| Continue to finish block 50

| Output predictor coefficients = ATMP()
| with NLSATMP

| Output ill-condition flag = ILLCOND

| Update GTMP() in one shot

| Output ill-condition flag = ILLCONDG

| Output predictor coefficients = GPTMP()
| Output ill-condition flag = ILLCONDG

| End of once-per-frame processing



