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FOREWORD 

 The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the 
International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff 
questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

 The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves 
Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between 
Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988). 

 Recommendation G.796 was prepared by Study Group XV and was approved under the Resolution No. 2 
procedure on the 1st of September 1992. 
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CCITT  NOTES 

1) In this Recommendation, the expression “Administration” is used for conciseness to indicate both a 
telecommunication administration and a recognized private operating agency. 
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Recommendation G.728 

Recommendation G.728 

CODING  OF  SPEECH  AT  16  kbit/s  USING  LOW-DELAY 
CODE  EXCITED  LINEAR  PREDICTION 

(1992) 

1 Introduction 

 This Recommendation contains the description of an algorithm for the coding of speech signals at 16 kbit/s 
using low-delay code excited linear prediction (LD-CELP). This Recommendation is organized as follows. 

 In § 2 a brief outline of the LD-CELP algorithm is given. In §§ 3 and 4, the LD-CELP encoder and LD-CELP 
decoder principles are discussed, respectively. In § 5, the computational details pertaining to each functional algorithmic 
block are defined. Annexes A, B, C and D contain tables of constants used by the LD-CELP algorithm. In Annex E the 
sequencing of variable adaptation and use is given. Finally, in Appendix I information is given on procedures applicable 
to the implementation verification of the algorithm. 

 Under further study is the future incorporation of three additional appendices (to be published separately) 
consisting of LD-CELP network aspects, LD-CELP fixed-point implementation description, and LD-CELP fixed-point 
verification procedures. 

2 Outline of LD-CELP 

 The LD-CELP algorithm consists of an encoder and a decoder described in §§ 2.1 and 2.2 respectively, and 
illustrated in Figure 1/G.728. 

 The essence of CELP techniques, which is an analysis-by-synthesis approach to codebook search, is retained in 
LD-CELP. The LD-CELP however, uses backward adaptation of predictors and gain to achieve an algorithmic delay of 
0.625 ms. Only the index to the excitation codebook is transmitted. The predictor coefficients are updated through LPC 
analysis of previously quantized speech. The excitation gain is updated by using the gain information embedded in the 
previously quantized excitation. The block size for the excitation vector and gain adaptation is five samples only. A 
perceptual weighting filter is updated using LPC analysis of the unquantized speech. 

2.1 LD-CELP encoder 

 After the conversion from A-law or µ-law PCM to uniform PCM, the input signal is partitioned into blocks of 
five-consecutive input signal samples. For each input block, the encoder passes each of 1024 candidate codebook vectors 
(stored in an excitation codebook) through a gain scaling unit and a synthesis filter. From the resulting 1024 candidate 
quantized signal vectors, the encoder identifies the one that minimizes a frequency-weighted mean-squared error measure 
with respect to the input signal vector. The 10-bit codebook index of the corresponding best codebook vector (or 
“codevector”), which gives rise to that best candidate quantized signal vector, is transmitted to the decoder. The best 
codevector is then passed through the gain scaling unit and the synthesis filter to establish the correct filter memory in 
preparation for the encoding of the next signal vector. The synthesis filter coefficients and the gain are updated 
periodically in a backward adaptive manner based on the previously quantized signal and gain-scaled excitation. 
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Simplified block diagram of LD-CELP coder  

 

2.2 LD-CELP decoder 

 The decoding operation is also performed on a block-by-block basis. Upon receiving each 10-bit index, the 
decoder performs a table look-up to extract the corresponding codevector from the excitation codebook. The extracted 
codevector is then passed through a gain scaling unit and a synthesis filter to produce the current decoded signal vector. 
The synthesis filter coefficients and the gain are then updated in the same way as in the encoder. The decoded signal 
vector is then passed through an adaptive postfilter to enhance the perceptual quality. The postfilter coefficients are 
updated periodically using the information available at the decoder. The five samples of the postfilter signal vector are 
next converted to five A-law or µ-law PCM output samples. 
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LD-CELP encoder block schematic  
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3 LD-CELP (encoder principles) 

 Figure 2/G.728 is a detailed block schematic of the LD-CELP encoder. The encoder in Figure 2/G.728 is 
mathematically equivalent to the encoder previously shown in Figure 1/G.728 but is computationally more efficient to 
implement. 

 In the following description: 

a) for each variable to be described, k is the sampling index and samples are taken at 125 µs intervals; 

b) a group of five consecutive samples in a given signal is called a vector of that signal. For example, five 
consecutive speech samples form a speech vector, five excitation samples form an excitation vector, and so 
on; 

c) we use n to denote the vector index, which is different from the sample index k; 

d) four consecutive vectors build one adaptation cycle. In a later section, we also refer to adaptation cycles as 
frames. The two terms are used interchangeably. 

 The excitation vector quantization (VQ) codebook index is the only information explicitly transmitted from the 
encoder to the decoder. Three other types of parameters will be periodically updated: the excitation gain, the synthesis 
filter coefficients, and the perceptual weighting filter coefficients. These parameters are derived in a backward adaptive 
manner from signals that occur prior to the current signal vector. The excitation gain is updated once per vector, while the 
synthesis filter coefficients and the perceptual weighting filter coefficients are updated once every four vectors (i.e. a 20-
sample, or 2.5 ms update period). Note that, although the processing sequence in the algorithm has an adaptation cycle of 
four vectors (20 samples), the basic buffer size is still only one vector (five samples). This small buffer size makes it 
possible to achieve a one-way delay less than 2 ms. 

 A description of each block of the encoder is given below. Since the LD-CELP coder is mainly used for 
encoding speech, for convenience of description, in the following we will assume that the input signal is speech, although 
in practice it can be other non-speech signals as well. 
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3.1 Input PCM format conversion 

 This block converts the input A-law or µ-law PCM signal so(k) to a uniform PCM signal su(k). 

3.1.1 Internal linear PCM levels 

 In converting from A-law or µ-law to linear PCM, different internal representations are possible, depending on 
the device. For example, standard tables for µ-law PCM define a linear range of –4 015.5 to +4 015.5. The corresponding 
range for A-law PCM is –2 016 to +2 016. Both tables list some output values having a fractional part of 0.5. These 
fractional parts cannot be represented in an integer device unless the entire table is multiplied by 2 to make all of the 
values integers. In fact, this is what is most commonly done in fixed point digital signal processing (DSP) chips. On the 
other hand, floating point DSP chips can represent the same values listed in the tables. Throughout this document it is 
assumed that the input signal has a maximum range of –4 095 to +4 095. This encompasses both the µ-law and A-law 
cases. In the case of A-law it implies that when the linear conversion results in a range of –2 016 to +2 016, those values 
should be scaled up by a factor of 2 before continuing to encode the signal. In the case of µ-law input to a fixed point 
processor where the input range is converted to –8 031 to +8 031, it implies that values should be scaled down by a factor 
of 2 before beginning the encoding process. Alternatively, these values can be treated as being in Q1 format, meaning 
there is one bit to the right of the decimal point. All computation involving the data would then need to take this bit into 
account. 

 For the case of 16-bit linear PCM input signals having full dynamic range of –32 768 to +32 767, the input 
values should be considered to be in Q3 format. This means that the input values should be scaled down (divided) by a 
factor of 8. On output at the decoder the factor of 8 would be restored for these signals. 

3.2 Vector buffer 

 This block buffers five consecutive speech samples su(5n), su(5n + 1), ..., su(5n + 4) to form a 5-dimensional 
speech vector s(n) = [su(5n), su(5n + 1), ..., su(5n + 4)]. 

3.3 Adapter for perceptual weighting filter 

 Figure 4/G.728 shows the detailed operation of the perceptual weighting filter adapter (block 3 in 
Figure 2/G.728). This adapter calculates the coefficients of the perceptual weighting filter once every four speech vectors 
based on linear prediction analysis (often referred to as LPC analysis) of unquantized speech. The coefficient updates 
occur at the third speech vector of every 4-vector adaptation cycle. The coefficients are held constant in between updates. 

 Refer to Figure 4a)/G.728. The calculation is performed as follows. First, the input (unquantized) speech vector 
is passed through a hybrid windowing module (block 36) which places a window on previous speech vectors and 
calculates the first 11 autocorrelation coefficients of the windowed speech signal as the output. The Levinson-Durbin 
recursion module (block 37) then converts these autocorrelation coefficients to predictor coefficients. Based on these 
predictor coefficients, the weighting filter coefficient calculator (block 38) derives the desired coefficients of the 
weighting filter. These three blocks are discussed in more detail below. 

 First, let us describe the principles of hybrid windowing. Since this hybrid windowing technique will be used in 
three different kinds of LPC analyses, we first give a more general description of the technique and then specialize it to 
different cases. Suppose the LPC analysis is to be performed once every L signal samples. To be general, assume that the 
signal samples corresponding to the current LD-CELP adaptation cycle are su(m), su(m + 1), su(m + 2), ..., su(m + L – 1). 
Then, for backward-adaptive LPC analysis, the hybrid window is applied to all previous signal samples with a sample 
index less than m (as shown in Figure 4b)/G.728). Let there be N non-recursive samples in the hybrid window function. 
Then, the signal samples su(m – 1), su(m – 2), ..., su(m – N) are all weighted by the non-recursive portion of the window. 
Starting with su(m – N – 1), all signal samples to the left of (and including) this sample are weighted by the recursive 
portion of the window, which has values b, bα, bα2, ..., where 0 < b < 1 and 0 < α < 1. 
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 At time m, the hybrid window function wm(k) is defined as 

  wm(k)  =  


 fm(k)  =  bα–[k–(m–N–1)], if  k  ≤  m – N – 1

 gm(k)  =  –sin [c(k – m)], if m – N  ≤ k  ≤  m – 1
 0, if  k  ≥  m

 (3-1a) 

and the window-weighted signal is 

 sm(k)  =  su(k) wm(k)  =  


 su(k) fm(k)  =  su(k) bα–[k–(m–N–1)], if  k  ≤  m – N – 1

 su(k) gm(k)  =  –su(k) sin [c(k  –  m)], if m – N  ≤ k  ≤  m – 1
 0, if  k  ≥  m

 (3-1b) 

 The samples of non-recursive portion gm(k) and the initial section of the recursive portion fm(k) for different 
hybrid windows are specified in Annex A. For an M-th order LPC analysis, we need to calculate M + 1 autocorrelation 
coefficients Rm(i) for i = 0, 1, 2, ..., M. The i-th autocorrelation coefficient for the current adaptation cycle can be 
expressed as 

  Rm(i)  =  ∑
k = –∞

m–1
  sm(k) sm(k – i)   =  rm(i)  +  ∑

k = m–N 

m–1
     sm(k) sm(k – i)  (3-1c) 

where 

  rm(i)  =  ∑
k = –∞

m–N–1
  sm(k) sm(k – i)   =  ∑

k = –∞

m–N–1
    su(k) su(k – i) fm(k) fm(k – i) (3-1d) 

 On the right-hand side of equation (3-1c), the first term rm(i) is the “recursive component” of Rm(i), while the 
second term is the “non-recursive component”. The finite summation of the non-recursive component is calculated for 
each adaptation cycle. On the other hand, the recursive component is calculated recursively. The following paragraphs 
explain how. 

 Suppose we have calculated and stored all rm(i)s for the current adaptation cycle and want to go on to the next 
adaptation cycle, which starts at sample su(m + L). After the hybrid window is shifted to the right by L samples, the new 
window-weighted signal for the next adaptation cycle becomes 

sm+L(k)  =  su(k) wm+L(k)  =


 su(k) fm+L(k)  =  su(k) fm(k) αL, if k  ≤  m + L – N – 1

 su(k) gm+L(k)  =  –su(k) sin [c(k – m – L)], if m + L – N  ≤ k  ≤  m + L – 1
0, if  k  ≥  m + L

 (3-1e) 

 The recursive component of Rm + L(i) can be written as 

  

rm+L(i)  =  ∑
k = –∞

m+L–N–1
     sm+L(k) sm+L(k – i) 

=  ∑
k = –∞ 

m–N–1
    sm+L(k) sm+L(k – i)   +   ∑

k = m–N

m+L–N–1
    sm+L(k) sm+L(k – i)

=  ∑
k = –∞ 

m–N–1
    su(k) fm(k) αL su(k – i) fm(k – i) αL  +   ∑

k = m–N

m+L–N–1
    sm+L(k) sm+L(k – i)

 (3-1f) 

or 

  rm+L(i)  =  α2L rm(i)  +  ∑
k = m–N

m+L–N–1
     sm+L(k) sm+L(k – i)  (3-1g) 
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 Therefore, rm+L(i) can be calculated recursively from rm(i) using equation (3-1g). This newly calculated 
rm+L(i) is stored back to memory for use in the following adaptation cycle. The autocorrelation coefficient rm+L(i) is then 
calculated as 

   Rm+L(i)  =  rm+L(i)  +  ∑
k = m+L–N

m+L–1
       sm+L(k) sm+L(k – i) (3-1h) 

 So far we have described in a general manner the principles of a hybrid window calculation procedure. The 
parameter values for the hybrid windowing module 36 in Figure 4a)/G.728 are 

  M  =  10, L  =  20, N  =  30 and α  =  



1

2

1
40  =  0.982820598 



 

 so that α2L  =  
1
2  

 Once the 11 autocorrelation coefficients R(i), i = 0, 1, ..., 10 are calculated by the hybrid windowing procedure 
described above, a “white noise correction” procedure is applied. This is done by increasing the energy R(0) by a small 
amount: 

   R(0)  ←  



257

256  R(0) (3-1i) 

 This has the effect of filling the spectral valleys with white noise so as to reduce the spectral dynamic range and 
alleviate ill-conditioning of the subsequent Levinson-Durbin recursion. The white noise correction factor (WNCF) of 
257/256 corresponds to a white noise level about 24 dB below the average speech power. 

 Next, using the white noise corrected autocorrelation coefficients, the Levinson-Durbin recursion module 37 
recursively computes the predictor coefficients from order 1 to order 10. Let the j-th coefficients of the i-th order 
predictor be aj(i). Then, the recursive procedure can be specified as follows: 

   E(0)  =  R(0) (3-2a) 

   ki  =  – 

R(i)  +  ∑
j=1

i–1

  a(i–1)
j  R(i – j)

E(i – 1)  (3-2b) 

   a(i)
i   =  ki (3-2c) 

   a(i)
j   =  a(i–1)

j   +  ki a
(i–1)
i–j  ;mmmm1  ≤  j  ≤  i – 1 (3-2d) 

   E(i)  =  (1  –  k2
i ) E(i – 1) (3-2e) 

 Equations (3-2b) through (3-2e) are evaluated recursively for i = 1, 2, ..., 10, and the final solution is given by 

   qi  =  a(10)
i  ,mmmm1  ≤  i  ≤  10 (3-2f) 
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 If we define q0=1, then the 10-th order “prediction-error filter” (sometimes called “analysis filter”) has the 
transfer function 

   ∼Q(z)  =  ∑
i=0

10
  qi z–i (3-3a) 

and the corresponding 10-th order linear predictor is defined by the following transfer function 

   Q(z)  =  –∑
i=1

10
  qi z–i (3-3b) 

 The weighting filter coefficient calculator (block 38) calculates the perceptual weighting filter coefficients 
according to the following equations: 

   Q(z / γ1)  =  –∑
i=1

10

 (qi γ
i
1) z–i (3-4b) 

and 

   Q(z / γ2)  =  –∑
i=1

10

 (qi γ
i
2) z–i (3-4c) 

 The perceptual weighting filter is a 10-th order pole-zero filter defined by the transfer function W(z) in equation 
(3-4a). The values of γ1 and γ2 are 0.9 and 0.6, respectively. 

 Now refer to Figure 2/G.728. The perceptual weighting filter adapter (block 3) periodically updates the 
coefficients of W(z) according to equations (3-2) through (3-4), and feeds the coefficients to the impulse response vector 
calculator (block 12) and the perceptual weighting filters (blocks 4 and 10). 

3.4 Perceptual weighting filter 

 In Figure 2/G.728, the current input speech vector s(n) is passed through the perceptual weighting filter 
(block 4), resulting in the weighted speech vector v(n). Note that except during initialization, the filter memory 
(i.e. internal state variables, or the values held in the delay units of the filter) should not be reset to zero at any time. On 
the other hand, the memory of the perceptual weighting filter (block 10) will need special handling as described later. 

3.4.1 Non-speech operation 

 For modem signals or other non-speech signals, CCITT test results indicate that it is desirable to disable the 
perceptual weighting filter. This is equivalent to setting W(z)=1. This can most easily be accomplished if γ1 and γ2 in 
equation (3-4a) are set equal to zero. The nominal values for these variables in the speech mode are 0.9 and 0.6, 
respectively. 

3.5 Synthesis filter 

 In Figure 2/G.728, there are two synthesis filters (blocks 9 and 22) with identical coefficients. Both filters are 
updated by the backward synthesis filter adapter (block 23). Each synthesis filter is a 50-th order all-pole filter that 
consists of a feedback loop with a 50-th order LPC predictor in the feedback branch. The transfer function of the 
synthesis filter is F(z) = 1/[1 – P(z)], where P(z) is the transfer function of the 50-th order LPC predictor. 
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 After the weighted speech vector v(n) has been obtained, a zero-input response vector r(n) will be generated 
using the synthesis filter (block 9) and the perceptual weighting filter (block 10). To accomplish this, we first open the 
switch 5, i.e. point it to node 6. This implies that the signal going from node 7 to the synthesis filter 9 will be zero. We 
then let the synthesis filter 9 and the perceptual weighting filter 10 “ring” for five samples (one vector). This means that 
we continue the filtering operation for five samples with a zero signal applied at node 7. The resulting output of the 
perceptual weighting filter 10 is the desired zero-input response vector r(n). 

 Note that except for the vector right after initialization, the memory of the filters 9 and 10 is in general 
non-zero; therefore, the output vector r(n) is also non-zero in general, even though the filter input from node 7 is zero. In 
effect, this vector r(n) is the response of the two filters to previous gain-scaled excitation vectors e(n – 1), e(n – 2), ... 
This vector actually represents the effect due to filter memory up to time (n – 1). 

3.6 VQ target vector computation 

 This block subtracts the zero-input response vector r(n) from the weighted speech vector v(n) to obtain the VQ 
codebook search target vector x(n). 

3.7 Backward synthesis filter adapter 

 This adapter 23 updates the coefficients of the synthesis filters 9 and 22. It takes the quantized (synthesized) 
speech as input and produces a set of synthesis filter coefficients as output. Its operation is quite similar to the perceptual 
weighting filter adapter 3. 

 A blown-up version of this adapter is shown in Figure 5/G.728. The operation of the hybrid windowing module 
49 and the Levinson-Durbin recursion module 50 is exactly the same as their counterparts (36 and 37) in 
Figure 4a)/G.728, except for the following three differences: 

a) the input signal is now the quantized speech rather than the unquantized input speech; 

b) the predictor order is 50 rather than 10; 

 c) the hybrid window parameters are different: N  =  35, α  =  



3

4
1

40  =  0.992833749 

 Note that the update period is still L = 20, and the white noise correction factor is still 257/256 = 1.00390625. 

 Let P̂(z) be the transfer function of the 50-th order LPC predictor, then it has the form 

   P̂(z)  =  –∑
i=1

50
  âi z–i (3-5) 

where âi are the predictor coefficients. To improve robustness to channel errors, these coefficients are modified so that 
the peaks in the resulting LPC spectrum have slightly larger bandwidths. The bandwidth expansion module 51 performs 
this bandwidth expansion procedure in the following way. Given the LPC predictor coefficients âi, a new set of 
coefficients ai is computed according to 

   ai  =  λi âi ,  i  =  1, 2, . . ., 50 (3-6) 

where λ is given by 

   λ  =  
253
256  =  0.98828125 (3-7) 
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 This has the effects of moving all the poles of the synthesis filter radially toward the origin by a factor of λ. 
Since the poles are moved away from the unit circle, the peaks in the frequency response are widened. 

 After such bandwidth expansion, the modified LPC predictor has a transfer function of 

   P(z)  =  –∑
i=1

50
  ai z–i (3-8) 

 The modified coefficients are then fed to the synthesis filters 9 and 22. These coefficients are also fed to the 
impulse response vector calculator 12. 

 The synthesis filters 9 and 22 both have a transfer function of 

   F(z)  =  
1

1  –  P(z) (3-9) 

 Similar to the perceptual weighting filter, the synthesis filters 9 and 22 are also updated once every four vectors, 
and the updates also occur at the third speech vector of every 4-vector adaptation cycle. However, the updates are based 
on the quantized speech up to the last vector of the previous adaptation cycle. In other words, a delay of two vectors is 
introduced before the updates take place. This is because the Levinson-Durbin recursion module 50 and the energy table 
calculator 15 (described later) are computationally intensive. As a result, even though the autocorrelation 
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of previously quantized speech is available at the first vector of each four vector cycle, computations may require more 
than one vector worth of time. Therefore, to maintain a basic buffer size of one vector (so as to keep the coding delay 
low), and to maintain real-time operation, a 2-vector delay in filter updates is introduced in order to facilitate real-time 
implementation. 

3.8 Backward vector gain adapter 

 This adapter updates the excitation gain σ(n) for every vector time index n. The excitation gain σ(n) is a scaling 
factor used to scale the selected excitation vector y(n). The adapter 20 takes the gain-scaled excitation vector e(n) as its 
input, and produces an excitation gain σ(n) as its output. Basically, it attempts to “predict” the gain of e(n) based on the 
gains of e(n – 1), e(n – 2), ... by using adaptive linear prediction in the logarithmic gain domain. This backward vector 
gain adapter 20 is shown in more detail in Figure 6/G.728. 
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 Refer to Figure 6/G.728. This gain adapter operates as follows. The 1-vector delay unit 67 makes the previous 
gain-scaled excitation vector e(n – 1) available. The root-mean-square (RMS) calculator 39 then calculates the RMS 
value of the vector e(n – 1). Next, the logarithm calculator 40 calculates the dB value of the RMS of e(n – 1), by first 
computing the base 10 logarithm and then multiplying the result by 20. 

 In Figure 6/G.728, a log-gain offset value of 32 dB is stored in the log-gain offset value holder 41. This value is 
meant to be roughly equal to the average excitation gain level (in dB) during voiced speech. The adder 42 subtracts this 
log-gain offset value from the logarithmic gain produced by the logarithm calculator 40. The resulting offset-removed 
logarithmic gain δ(n – 1) is then used by the hybrid windowing module 43 and the Levinson-Durbin recursion 
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module 44. Again, blocks 43 and 44 operate in exactly the same way as blocks 36 and 37 in the perceptual weighting 
filter adapter module (Figure 4a)/G.728), except that the hybrid window parameters are different and that the signal under 
analysis is now the offset-removed logarithmic gain rather than the input speech. (Note that only one gain value is 
produced for every five speech samples.) The hybrid window parameters of block 43 are: 

   M  =  10, N  =  20, L  =  4, α  =  



3

4

1
8  =  0.96467863 

 The output of the Levinson-Durbin recursion module 44 is the coefficients of a 10-th order linear predictor with 
a transfer function of 

   R̂(z)  =  –∑
i=1

10
  α̂i z–i (3-10) 

 The bandwidth expansion module 45 then moves the roots of this polynomial radially toward the z-plane 
original in a way similar to the module 51 in Figure 5/G.728. The resulting bandwidth-expanded gain predictor has a 
transfer function of 

   R(z)  =  –∑
i=1

10
  αi z–i (3-11) 

where the coefficients αi are computed as 

   αi  =  



29

32
i
 α̂i  =  (0.90625)i α̂i (3-12) 

 Such bandwidth expansion makes the gain adapter (block 20 in Figure 2/G.728) more robust to channel errors. 
These αi are then used as the coefficients of the log-gain linear predictor (block 46 of Figure 6/G.728). 

 This predictor 46 is updated once every four speech vectors, and the updates take place at the second speech 
vector of every 4-vector adaptation cycle. The predictor attempts to predict δ(n) based on a linear combination of 

δ(n – 1), δ(n – 2), ..., δ(n – 10). The predicted version of δ(n) is denoted as δ̂(n) and is given by 

   ^δ(n)  =  –∑
i=1

10
  αi δ(n – i) (3-13) 

 After δ̂(n) has been produced by the log-gain linear predictor 46, we add back the log-gain offset value of 
32 dB stored in 41. The log-gain limiter 47 then checks the resulting log-gain value and clips it if the value is 
unreasonably large or unreasonably small. The lower and upper limits are set to 0 dB and 60 dB, respectively. The gain 
limiter output is then fed to the inverse logarithm calculator 48, which reverses the operation of the logarithm calculator 
40 and converts the gain from the dB value to the linear domain. The gain limiter ensures that the gain in the linear 
domain is in between 1 and 1000. 

3.9 Codebook search module 

 In Figure 2/G.728, blocks 12 through 18 constitute a codebook search module 24. This module searches 
through the 1024 candidate codevectors in the excitation VQ codebook 19 and identifies the index of the best codevector 
which gives a corresponding quantized speech vector that is closest to the input speech vector. 
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 To reduce the codebook search complexity, the 10-bit, 1024-entry codebook is decomposed into two smaller 
codebooks: a 7-bit “shape codebook” containing 128 independent codevectors and a 3-bit “gain codebook” containing 
eight scalar values that are symmetric with respect to zero (i.e. one bit for sign, two bits for magnitude). The final output 
codevector is the product of the best shape codevector (from the 7-bit shape codebook) and the best gain level (from the 
3-bit gain codebook). The 7-bit shape codebook table and the 3-bit gain codebook table are given in Annex B. 

3.9.1 Principle of codebook search 

 In principle, the codebook search module 24 scales each of the 1024 candidate codevectors by the current 
excitation gain σ(n) and then passes the resulting 1024 vectors one at a time through a cascaded filter consisting of the 
synthesis filter F(z) and the perceptual weighting filter W(z). The filter memory is initialized to zero each time the module 
feeds a new codevector to the cascaded filter with transfer function H(z) = F(z)W(z). 

 The filtering of VQ codevectors can be expressed in terms of matrix-vector multiplication. Let yj be the j-th 
codevector in the 7-bit shape codebook, and let gi be the i-th level in the 3-bit gain codebook. Let {h(n)} denote the 
impulse response sequence of the cascaded filter. Then, when the codevector specified by the codebook indices i and j is 
fed to the cascaded filter H(z), the filter output can be expressed as 

   ∼xij  =  Hσ(n)gi yj (3-14) 

where 

   H  =  









 h(0) 0 0 0 0 

 h(1) h(0) 0 0 0

 h(2) h(1) h(0) 0 0

 h(3) h(2) h(1) h(0) 0

 h(4) h(3) h(2) h(1) h(0)
 

 (3-15) 

 The codebook search module 24 searches for the best combination of indices i and j which minimizes the 
following mean-squared error (MSE) distortion. 

   D  =  || x(n)  –  ~xij || 2  =  σ2(n) || x̂(n)  –  gi Hyj || 2 (3-16) 

where x̂(n) = x(n)/σ(n) is the gain-normalized VQ target vector. Expanding the terms gives us 

   D  =  σ2(n) 



 

 || x̂(n) || 2  –  2gi x̂T(n) Hyj  +  g 2i || Hyj || 2  (3-17) 

 Since the term ||x̂(n)||2 and the value of σ2(n) are fixed during the codebook search, minimizing D is equivalent 
to minimizing 

   D̂  = –2gi pT(n)yj  +  g 2i Ej (3-18) 

where 

   p(n)  =  HT  x̂(n) (3-19) 

and 

   Ej  =  || Hyj || 2 (3-20) 



   Recommendation G.728      (09/92) 15 

 Note that Ej is actually the energy of the j-th filtered shape codevectors and does not depend on the VQ target 
vector x̂(n). Also note that the shape codevector yj is fixed, and the matrix H only depends on the synthesis filter and the 
weighting filter, which are fixed over a period of four speech vectors. Consequently, Ej is also fixed over a period of four 
speech vectors. Based on this observation, when the two filters are updated, we can compute and store the 128 possible 
energy terms Ej, j = 0, 1, 2, ..., 127 (corresponding to the 128 shape codevectors) and then use these energy terms 
repeatedly for the codebook search during the next four speech vectors. This arrangement reduces the codebook search 
complexity. 

 For further reduction in computation, we can precompute and store the two arrays 

   bi  =  2gi (3-21) 

and 

   ci  =  g 2i (3-22) 

for i = 0, 1, ..., 7. These two arrays are fixed since gis are fixed. We can now express D̂ as 

   D̂  =  –bi Pj  +  ci Ej (3-23) 

where Pj = pT (n)yj. 

 Note that once the Ej, bi, and ci tables are precomputed and stored, the inner product term Pj = pT (n)yj, which 
solely depends on j, takes most of the computation in determining D̂. Thus, the codebook search procedure steps through 
the shape codebook and identifies the best gain index i for each shape codevector yj. 

 There are several ways to find the best gain index i for a given shape codevector yj. 

a) The first and the most obvious way is to evaluate the eight possible D̂ values corresponding to the eight 
possible values of i, and then pick the index i which corresponds to the smallest D̂. However, this requires 
two multiplications for each i. 

b) A second way is to compute the optimal gain ĝ = Pj/Ej first, and then quantize this gain ĝ to one of the 
eight gain levels {g0, ..., g7} in the 3-bit gain codebook. The best index i is the index of the gain level gi 
which is closest to ĝ. However, this approach requires a division operation for each of the 128 shape 
codevectors, and division is typically very inefficient to implement using DSP processors. 

c) A third approach, which is a slightly modified version of the second approach, is particularly efficient for 
DSP implementations. The quantization of ĝ can be thought of as a series of comparisons between ĝ and 
the “quantizer cell boundaries”, which are the mid-points between adjacent gain levels. Let di be the mid-
point between gain level gi and gi+1 that have the same sign. Then, testing “ĝ < di?” is equivalent to testing 
“Pj < diEj?”. Therefore, by using the latter test, we can avoid the division operation and still require only 
one multiplication for each index i. This is the approach used in the codebook search. The gain quantizer 
cell boundaries dis are fixed and can be precomputed and stored in a table. For the eight gain levels, 
actually only six boundary values d0, d1, d2, d4, d5, and d6 are used. 

 Once the best indices i and j are identified, they are concatenated to form the output of the codebook search 
module – a single 10-bit best codebook index. 

3.9.2 Operation of codebook search module 

 With the codebook search principle introduced, the operation of the codebook search module 24 is now 
described below. Refer to Figure 2/G.728. Every time when the synthesis filter 9 and the perceptual weighting filter 10 
are updated, the impulse response vector calculator 12 computes the first five samples of the impulse response of the 
cascaded filter F(z)W(z). To compute the impulse response vector, we first set the memory of the cascaded filter to 
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zero, then excite the filter with an input sequence {1, 0, 0, 0, 0}. The corresponding five output samples of the filter are 
h(0), h(1), ..., h(4), which constitute the desired impulse response vector. After this impulse response vector is computed, 
it will be held constant and used in the codebook search for the following four speech vectors, until the filters 9 and 10 
are updated again. 

 Next, the shape codevector convolution module 14 computes the 128 vectors Hyj, j = 0, 1, 2, ..., 127. In other 
words, it convolves each shape codevector yj, j = 0, 1, 2, ..., 127 with the impulse response sequence h(0), h(1), ..., h(4), 
where the convolution is only performed for the first five samples. The energies of the resulting 128 vectors are then 
computed and stored by the energy table calculator 15 according to equation (3-20). The energy of a vector is defined as 
the sum of the squared value of each vector component. 

 Note that the computations in blocks 12, 14, and 15 are performed only once every four speech vectors, while 
the other blocks in the codebook search module perform computations for each speech vector. Also note that the updates 
of the Ej table is synchronized with the updates of the synthesis filter coefficients. That is, the new Ej table will be used 
starting from the third speech vector of every adaptation cycle. (Refer to the discussion in § 3.7.) 

 The VQ target vector normalization module 16 calculates the gain-normalized VQ target vector  
x̂(n) = x(n)/σ(n). In DSP implementations, it is more efficient to first compute 1/σ(n), and then multiply each component 
of x(n) by 1/σ(n). 

 Next, the time-reversed convolution module 13 computes the vector p(n) = HTx̂(n). This operation is equivalent 
to first reversing the order of the components of x̂(n), then convolving the resulting vector with the impulse response 
vector, and then reverse the component order of the output again (and hence the name “time-reversed convolution”). 

 Once Ej, bi, and ci tables are precomputed and stored, and the vector p(n) is also calculated, then the error 
calculator 17 and the best codebook index selector 18 work together to perform the following efficient codebook search 
algorithm: 

a) Initialize D̂min to a number larger than the largest possible value of D̂ (or use the largest possible number 
of the DSPs number representation system). 

b) Set the shape codebook index j = 0. 

c) Compute the inner product Pj = pt(n)yj. 

d) If pj < 0, go to step h) to search through negative gains; otherwise, proceed to step e) to search through 
positive gains. 

e) If Pj < d0Ej, set i = 0 and go to step k); otherwise proceed to step f). 

f) If Pj < d1Ej, set i = 1 and go to step k); otherwise proceed to step g). 

g) If Pj < d2Ej, set i = 2 and go to step k); otherwise set i = 3 and go to step k). 

h) If Pj > d4Ej, set i = 4 and go to step k); otherwise proceed to step i). 

i) If Pj > d5Ej, set i = 5 and go to step k); otherwise proceed to step j). 

j) If Pj > d6Ej, set i = 6; otherwise set i = 7. 

k) Compute D̂ = –biPj + ciEj. 

l) If D̂ < D̂min, then set D̂min = D̂, imin = i, and jmin = j. 

m) If j < 127, set j = j + 1 and go to step c); otherwise proceed to step n). 

n) When the algorithm proceeds to here, all 1024 possible combinations of gains and shapes have been 
searched through. The resulting imin, and jmin are the desired channel indices for the gain and the shape, 
respectively. The output best codebook index (10-bit) is the concatenation of these two indices, and the 
corresponding best excitation codevector is y(n) = giminyjmin. The selected 10-bit codebook index is 
transmitted through the communication channel to the decoder. 
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3.10 Simulated decoder 

 Although the encoder has identified and transmitted the best codebook index so far, some additional tasks have 
to be performed in preparation for the encoding of the following speech vectors. First, the best codebook index is fed to 
the excitation VQ codebook to extract the corresponding best codevector y(n) = giminyjmin. This best codevector is then 
scaled by the current excitation gain σ(n) in the gain stage 21. The resulting gain-scaled excitation vector is e(n) = 
σ(n)y(n). 

 This vector e(n) is then passed through the synthesis filter 22 to obtain the current quantized speech vector 
sq(n). Note that blocks 19 through 23 form a simulated decoder 8. Hence, the quantized speech vector sq(n) is actually the 
simulated decoded speech vector when there are no channel errors. In Figure 2/G.728, the backward synthesis filter 
adapter 23 needs this quantized speech vector sq(n) to update the synthesis filter coefficients. Similarly, the backward 
vector gain adapter 20 needs the gain-scaled excitation vector e(n) to update the coefficients of the log-gain linear 
predictor. 

 One last task before proceeding to encode the next speech vector is to update the memory of the synthesis filter 
9 and the perceptual weighting filter 10. To accomplish this, we first save the memory of filters 9 and 10 which was left 
over after performing the zero-input response computation described in § 3.5. We then set the memory of filters 9 and 10 
to zero and close the switch 5, i.e. connect it to node 7. Then, the gain-scaled excitation vector e(n) is passed through the 
two zero-memory filters 9 and 10. Note that since e(n) is only five samples long and the filters have zero memory, the 
number of multiply-adds only goes up from 0 to 4 for the five-sample period. This is a significant saving in computation 
since there would be 70 multiply-adds per sample if the filter memory were not zero. Next, we add the saved original 
filter memory back to the newly established filter memory after filtering e(n). This in effect adds the zero-input responses 
to the zero-state responses of the filters 9 and 10. This results in the desired set of filter memory which will be used to 
compute the zero-input response during the encoding of the next speech vector. 

 Note that after the filter memory update, the top five elements of the memory of the synthesis filter 9 are exactly 
the same as the components of the desired quantized speech vector sq(n). Therefore, we can actually omit the synthesis 
filter 22 and obtain sq(n) from the updated memory of the synthesis filter 9. This means an additional saving of 50 
multiply-adds per sample. 

 The encoder operation described so far specifies the way to encode a single input speech vector. The encoding 
of the entire speech waveform is achieved by repeating the above operation for every speech vector. 

3.11 Synchronization and in-band signalling 

 In the above description of the encoder, it is assumed that the decoder knows the boundaries of the received 10-
bit codebook indices and also knows when the synthesis filter and the log-gain predictor need to be updated (recall that 
they are updated once every four vectors). In practice, such synchronization information can be made available to the 
decoder by adding extra synchronization bits on top of the transmitted 16 kbit/s bit stream. However, in many 
applications there is a need to insert synchronization or in-band signalling bits as part of the 16 kbit/s bit stream. This can 
be done in the following way. Suppose a synchronization bit is to be inserted once every N speech vectors; then, for every 
N-th input speech vector, we can search through only half of the shape codebook and produce a 6-bit shape codebook 
index. In this way, we rob one bit out of every N-th transmitted codebook index and insert a synchronization or signalling 
bit instead. 

 It is important to note that we cannot arbitrarily rob one bit out of an already selected 7-bit shape codebook 
index, instead, the encoder has to know which speech vectors will be robbed one bit and then search through only half of 
the codebook for those speech vectors. Otherwise, the decoder will not have the same decoded excitation codevectors for 
those speech vectors. 
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 Since the coding algorithm has a basic adaptation cycle of four vectors, it is reasonable to let N be a multiple of 
4 so that the decoder can easily determine the boundaries of the encoder adaptation cycles. For a reasonable value of N 
(such as 16, which corresponds to a 10 milliseconds bit robbing period), the resulting degradation in speech quality is 
essentially negligible. In particular, we have found that a value of N = 16 results in little additional distortion. The rate of 
this bit robbing is only 100 bits/s. 

 If the above procedure is followed, we recommend that when the desired bit is to be a 0, only the first half of 
the shape codebook be searched, i.e. those vectors with indices 0 to 63. When the desired bit is a 1, then the second half 
of the codebook is searched and the resulting index will be between 64 and 127. The significance of this choice is that the 
desired bit will be the leftmost bit in the codeword, since seven bits for the shape codevector precede the three bits for the 
sign and gain codebook. We further recommend that the synchronization bit be robbed from the last vector in a cycle of 
four vectors. Once it is detected, the next codeword received can begin the new cycle of codevectors. 

 Although we state that synchronization causes very little distortion, we note that no formal testing has been 
done on hardware which contained this synchronization strategy. Consequently, the amount of the degradation has not 
been measured. 

 However, we specifically recommend against using the synchronization bit for synchronization in systems in 
which the coder is turned on and off repeatedly. For example, a system might use a speech activity detector to turn off the 
coder when no speech were present. Each time the encoder was turned on, the decoder would need to locate the 
synchronization sequence. At 100 bit/s, this would probably take several hundred milliseconds. In addition, time must be 
allowed for the decoder state to track the encoder state. The combined result would be a phenomena known as front-end 
clipping in which the beginning of the speech utterance would be lost. If the encoder and decoder are both started at the 
same instant as the onset of speech, then no speech will be lost. This is only possible in systems using external signalling 
for the start-up times and external synchronization. 

4 LD-CELP decoder principles 

 Figure 3/G.728 is a block schematic of the LD-CELP decoder. A functional description of each block is given 
in the following sections. 

4.1 Excitation VQ codebook 

 This block contains an excitation VQ codebook (including shape and gain codebooks) identical to the 
codebook 19 in the LD-CELP encoder. It uses the received best codebook index to extract the best codevector y(n) 
selected in the LD-CELP encoder. 

4.2 Gain scaling unit 

 This block computes the scaled excitation vector e(n) by multiplying each component of y(n) by the gain σ(n). 

4.3 Synthesis filter 

 This filter has the same transfer function as the synthesis filter in the LD-CELP encoder (assuming error-free 
transmission). It filters the scaled excitation vector e(n) to produce the decoded speech vector sd(n). Note that in order to 
avoid any possible accumulation of round-off errors during decoding, sometimes it is desirable to exactly duplicate the 
procedures used in the encoder to obtain sq(n). If this is the case, and if the encoder obtains sq(n) from the updated 
memory of the synthesis filter 9, then the decoder should also compute sd(n) as the sum of the zero-input response and the 
zero-state response of the synthesis filter 32, as is done in the encoder. 

4.4 Backward vector gain adapter 

 The function of this block is described in § 3.8. 
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4.5 Backward synthesis filter adapter 

 The function of this block is described in § 3.7. 

4.6 Postfilter 

 This block filters the decoded speech to enhance the perceptual quality. This block is further expanded in 
Figure 7/G.728 to show more details. Refer to Figure 7/G.728. The postfilter basically consists of three major parts: long-
term postfilter 71, short-term postfilter 72, and output gain scaling unit 77. The other four blocks in Figure 7/G.728 are 
just to calculate the appropriate scaling factor for use in the output gain scaling unit 77. 
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 The long-term postfilter 71, sometimes called the pitch postfilter, is a comb filter with its spectral peaks located 
at multiples of the fundamental frequency (or pitch frequency) of the speech to be postfiltered. The reciprocal of the 
fundamental frequency is called the pitch period. The pitch period can be extracted from the decoded speech using a 
pitch detector (or pitch extractor). Let p be the fundamental pitch period (in samples) obtained by a pitch detector, then 
the transfer function of the long-term postfilter can be expressed as 

   Hl (z)  =  gl (1  +  b z–p) (4-1) 

where the coefficients gl, b and the pitch period p are updated once every four speech vectors (an adaptation cycle) and 
the actual updates occur at the third speech vector of each adaptation cycle. For convenience, we will, from now on, call 
an adaptation cycle a frame. The derivation of gl, b, and p will be described later in § 4.7. 
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 The short-term postfilter 72 consists of a 10th-order pole-zero filter in cascade with a first-order all-zero filter. 
The 10th-order pole-zero filter attenuates the frequency components between formant peaks, while the first-order all-zero 
filter attempts to compensate for the spectral tilt in the frequency response of the 10th-order pole-zero filter. 

 Let ãi, i = 1, 2, ..., 10 be the coefficients of the 10th-order LPC predictor obtained by backward LPC analysis of 
the decoded speech, and let k1 be the first reflection coefficient obtained by the same LPC analysis. Then, both ãi and k1 
can be obtained as by-products of the 50th-order backward LPC analysis (block 50 in Figure 5/G.728). All we have to do 
is to stop the 50th-order Levinson-Durbin recursion at order 10, copy k1 and ã1, ã2, ..., ã10, and then resume the 
Levinson-Durbin recursion from order 11 to order 50. The transfer function of the short-term postfilter is 

   Hs (z)  =  

1  –  ∑
i=1

10

  b̄i z–i

1  –  ∑
i=1

10
  āi z–i

 [1  +  µz–1] (4-2) 

where 

   b̄i  =  ~ai (0.65)i; i  =  1, 2, . . ., 10 (4-3) 

   āi  =  ~ai (0.75)i; i  =  1, 2, . . ., 10 (4-4) 

and 

   µ  =  (0.15) k1 (4-5) 

 The coefficients a
–

i; b
–

i and µ are also updated once a frame, but the updates take place at the first vector of each 
frame (i.e. as soon as ãi becomes available). 

 In general, after the decoded speech is passed through the long-term postfilter and the short-term postfilter, the 
filtered speech will not have the same power level as the decoded (unfiltered) speech. To avoid occasional large gain 
excursions, it is necessary to use automatic gain control to force the postfiltered speech to have roughly the same power 
as the unfiltered speech. This is done by blocks 73 through 77. 

 The sum of absolute value calculator 73 operates vector-by-vector. It takes the current decoded speech vector 
sd(n) and calculates the sum of the absolute values of its five vector components. Similarly, the sum of absolute value 
calculator 74 performs the same type of calculation, but on the current output vector sf (n) of the short-term postfilter. The 
scaling factor calculator 75 then divides the output value of block 73 by the output value of block 74 to obtain a scaling 
factor for the current sf (n) vector. This scaling factor is then filtered by a first-order lowpass filter 76 to get a separate 
scaling factor for each of the five components of sf (n). The first-order lowpass filter 76 has a transfer function of 0.01/(1 
– 0.99z–1). The lowpass filtered scaling factor is used by the output gain scaling unit 77 to perform sample-by-sample 
scaling of the short-term postfilter output. Note that since the scaling factor calculator 75 only generates one scaling 
factor per vector, it would have a staircase effect on the sample-by-sample scaling operation of block 77 if the lowpass 
filter 76 were not present. The lowpass filter 76 effectively smooths out such a staircase effect. 

4.6.1 Non-speech operation 

 CCITT objective test results indicate that for some non-speech signals, the performance of the coder is 
improved when the adaptive postfilter is turned off. Since the input to the adaptive postfilter is the output of the synthesis 
filter, this signal is always available. In an actual implementation this unfiltered signal shall be output when the switch is 
set to disable the postfilter. 
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4.7 Postfilter adapter 

 This block calculates and updates the coefficients of the postfilter once a frame. This postfilter adapter is 
further expanded in Figure 8/G.728. 
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 Refer to Figure 8/G.728. The 10th-order LPC inverse filter 81 and the pitch period extraction module 82 work 
together to extract the pitch period from the decoded speech. In fact, any pitch extractor with reasonable performance 
(and without introducing additional delay) may be used here. What we described here is only one possible way of 
implementing a pitch extractor. 

 The 10th-order LPC inverse filter 81 has a transfer function of 

   ~A(z)  =  1  –  ∑
i=1

10

  ~ai z–i (4-6) 

where the coefficients ãi are supplied by the Levinson-Durbin recursion module (block 50 of Figure 5/G.728) and are 
updated at the first vector of each frame. This LPC inverse filter takes the decoded speech as its input and produces the 
LPC prediction residual sequence {d(k)} as its output. We use a pitch analysis window size of 100 samples and a range 
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of pitch period from 20 to 140 samples. The pitch period extraction module 82 maintains a long buffer to hold the last 
240 samples of the LPC prediction residual. For indexing convenience, the 240 LPC residual samples stored in the buffer 
are indexed as d(–139), d(–138), ..., d(100). 

 The pitch period extraction module 82 extracts the pitch period once a frame, and the pitch period is extracted 
at the third vector of each frame. Therefore, the LPC inverse filter output vectors should be stored into the LPC residual 
buffer in a special order: the LPC residual vector corresponding to the fourth vector of the last frame is stored as d(81), 
d(82), ..., d(85), the LPC residual of the first vector of the current frame is stored as d(86), d(87), ..., d(90), the LPC 
residual of the second vector of the current frame is stored as d(91), d(92), ..., d(95), and the LPC residual of the third 
vector is stored as d(96), d(97), ..., d(100). The samples d(–139), d(–138), ..., d(80) are simply the previous LPC residual 
samples arranged in the correct time order. 

 Once the LPC residual buffer is ready, the pitch period extraction module 82 works in the following way. First, 
the last 20 samples of the LPC residual buffer [d(81) through d(100)] are lowpass filtered at 1 kHz by a third-order 
elliptic filter (coefficients given in Annex D) and then 4:1 decimated (i.e. down-sampled by a factor of 4). This results in 
five lowpass filtered and decimated LPC residual samples, denoted d̄(21), d̄(22), ..., d̄(25), which are stored as the last 
five samples in a decimated LPC residual buffer. Besides these five samples, the other 55 samples d̄(–34),  
d̄(–33), ..., d̄(20) in the decimated LPC residual buffer are obtained by shifting previous frames of decimated LPC 
residual samples. The i-th correlation of the decimated LPC residual samples are then computed as 

   ρ(i)  =  ∑
n=1

25

  d̄(n) d̄(n – i) (4-7) 

for time lags i = 5, 6, 7, ..., 35 (which correspond to pitch periods from 20 to 140 samples). The time lag τ which gives 
the largest of the 31 calculated correlation values is then identified. Since this time lag τ is the lag in the 4:1 decimated 
residual domain, the corresponding time lag which gives the maximum correlation in the original undecimated residual 
domain should lie between 4τ–3 and 4τ+3. To get the original time resolution, we next use the undecimated LPC residual 
buffer to compute the correlation of the undecimated LPC residual 

   C(i)  =  ∑
k=1

100
  d(k) d(k – i) (4-8) 

for seven lags i = 4τ–3, 4τ–2, ..., 4τ+3. Out of the seven time lags, the lag p0 that gives the largest correlation is 
identified. 

 The time lag p0 found this way may turn out to be a multiple of the true fundamental pitch period. What we 
need in the long-term postfilter is the true fundamental pitch period, not any multiple of it. Therefore, we need to do more 
processing to find the fundamental pitch period. We make use of the fact that we estimate the pitch period quite 
frequency – once every 20 speech samples. Since the pitch period typically varies between 20 and 140 samples, our 
frequent pitch estimation means that, at the beginning of each talk spurt, we will first get the fundamental pitch period 
before the multiple pitch periods have a chance to show up in the correlation peak-picking process described above. From 
there on, we will have a chance to lock on to the fundamental pitch period by checking to see if there is any correlation 
peak in the neighbourhood of the pitch period of the previous frame. 

 Let p̂ be the pitch period of the previous frame. If the time lag p0 obtained above is not in the neighbourhood of 
p̂, then we also evaluate equation (4-8) for i = p̂–6, p̂–5, ..., p̂+5, p̂+6. Out of these 13 possible time lags, the time 
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lag p1 that gives the largest correlation is identified. We then test to see if this new lag p1 should be used as the output 
pitch period of the current frame. First, we compute 

   β0  =  

∑
k=1

100
  d(k) d(k – p0)

∑
k=1

100
  d(k – p0) d(k – p0)

 (4-9) 

which is the optimal tap weight of a single-tap pitch predictor with a lag of p0 samples. The value of β0 is then clamped 
between 0 and 1. Next, we also compute 

   β1  =  

∑
k=1

100
  d(k) d(k – p1)

∑
k=1

100
  d(k – p1) d(k – p1)

 (4-10) 

which is the optimal tap weight of a single-tap pitch predictor with a lag of p1 samples. The value of β1 is then also 
clamped between 0 and 1. Then, the output pitch period p of block 82 is given by 

   p  =  


p0 if β1  ≤  0.4 β0

p1 if β1  >  0.4 β0
 (4-11) 

 After the pitch period extraction module 82 extracts the pitch period p, the pitch predictor tap calculator 83 then 
calculates the optimal tap weight of a single-tap pitch predictor for the decoded speech. The pitch predictor tap calculator 
83 and the long-term postfilter 71 share a long buffer of decoded speech samples. This buffer contains decoded speech 
samples sd(–239), sd(–238), sd(–237), ..., sd(4), sd(5), where sd(1) through sd(5) correspond to the current vector of 
decoded speech. The long-term postfilter 71 uses this buffer as the delay  unit of the filter. On the other hand, the pitch 
predictor tap calculator 83 uses this buffer to calculate 

   β  =  

∑
k= –99

0
  sd(k) sd(k – p)

∑
k= –99

0
  sd(k – p) sd(k – p)

 (4-12) 

 The long-term postfilter coefficient calculator 84 then takes the pitch period p and the pitch predictor tap β and 
calculates the long-term postfilter coefficients b and gl as follows 

   b  =  



0 if β  <  0.6

0.15 β if 0.6  ≤  β  ≤  1

0.15 if β  >  1
 (4-13) 

   gl  =  
1

1  +  b 
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 In general, the closer β is to unity, the more periodic the speech waveform is. As can be seen in equations 
(4-13) and (4-14), if β < 0.6, which roughly corresponds to unvoiced or transition regions of speech, then b = 0 and 
gl = 1, and the long-term postfilter transfer function becomes Hl(z) = 1, which means the filtering operation of the long-
term postfilter is totally disabled. On the other hand, if 0.6 ≤ β ≤ 1, the long-term postfilter is turned on, and the degree of 
comb filtering is determined by β. The more periodic the speech waveform, the more comb filtering is performed. 
Finally, if β > 1, then b is limited to 0.15; this is to avoid too much comb filtering. The coefficient gl is a scaling factor of 
the long-term postfilter to ensure that the voiced regions of speech waveforms do not get amplified relative to the 
unvoiced or transition regions. (If gl were held constant at unity, then after the long-term postfiltering, the voiced regions 
would be amplified by a factor of 1+b roughly. This would make some consonants, which correspond to unvoiced and 
transition regions, sound unclear or too soft.) 

 The short-term postfilter coefficient calculator 85 calculates the short-term postfilter coefficients āi, b̄i, and µ at 
the first vector of each frame according to equations (4-3), (4-4), and (4-5). 

4.8 Output PCM format conversion 

 This block converts the five components of the decoded speech vector into five corresponding A-law or µ-law 
PCM samples and output these five PCM samples sequentially at 125 µs time intervals. Note that if the internal linear 
PCM format has been scaled as described in § 3.1.1, the inverse scaling must be performed before conversion to A-law or 
µ-law PCM. 

5 Computational details 

 This section provides the computational details for each of the LD-CELP encoder and decoder elements. 
Subsections 5.1 and 5.2 list the names of coder parameters and internal processing variables which will be referred to in 
later sections. The detailed specification of each block in Figure 2/G.728 through Figure 6/G.728 is given in § 5.3 
through the end of § 5. To encode and decode an input speech vector, the various blocks of the encoder and the decoder 
are executed in an order which roughly follows the sequence from § 5.3 to the end. 

5.1 Description of basic coder parameters 

 The names of the basic coder parameters are defined in Table 1/G.728. In Table 1/G.728, the first column gives 
the names of coder parameters which will be used in later detailed description of the LD-CELP algorithm. If a parameter 
has been referred to in § 3 or 4 but was represented by a different symbol, that equivalent symbol will be given in the 
second column for easy reference. Each coder parameter has a fixed value which is determined in the coder design stage. 
The third column shows these fixed parameter values, and the fourth column is a brief description of the coder 
parameters. 

5.2 Description of internal variables 

 The internal processing variables of LD-CELP are listed in Table 2/G.728, which has a layout similar to Table 
1/G.728. The second column shows the range of index in each variable array. The fourth column gives the recommended 
initial values of the variables. The initial values of some arrays are given in Annexes A, B or C. It is recommended 
(although not required) that the internal variables be set to their initial values when the encoder or decoder just starts 
running, or whenever a reset of coder states is needed (such as in DCME applications). These initial values ensure that 
there will be no glitches right after start-up or resets. 

 Note that some variable arrays can share the same physical memory locations to save memory space, although 
they are given different names in the tables to enhance clarity. 
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 As mentioned in earlier sections, the processing sequence has a basic adaptation cycle of four speech vectors. 
The variable ICOUNT is used as the vector index. In other words, ICOUNT = n when the encoder or decoder is 
processing the n-th speech vector in an adaptation cycle. 

 It should be noted that, for the convenience of Levinson-Durbin recursion, the first element of A, ATMP, AWP, 
AWZ, and GP arrays are always 1 and never get changed, and, for i ≥ 2, the i-th elements are the (i – 1)-th elements of the 
corresponding symbols in § 3. 

 In the following sections, the asterisk (*) denotes arithmetic multiplication. 

TABLE  1/G.728 

Basic coder parameters of LD-CELP 

Name Equivalent 
symbol 

Value Description 

AGCFAC  0.99 AGC adaptation speed controlling factor 

FAC λ 253/256 Bandwidth expansion factor of synthesis filter 

FACGP λg 29/32 Bandwidth expansion factor of log-gain predictor 

DIMINV  0.2 Reciprocal of vector dimension 

IDIM  5 Vector dimension (excitation block size) 

GOFF  32 Log-gain offset value 

KPDELTA  6 Allowed deviation from previous pitch period 

KPMIN  20 Minimum pitch period (samples) 

KPMAX  140 Maximum pitch period (samples) 

LPC  50 Synthesis filter order 

LPCLG  10 Log-gain predictor order 

LPCW  10 Perceptual weighting filter order 

NCWD  128 Shape codebook size (number of codevectors) 

NFRSZ  20 Frame size (adaptation cycle size in samples) 

NG  8 Gain codebook size (number of gain levels) 

NONR  35 Number of non-recursive window samples for synthesis filter 

NONRLG  20 Number of non-recursive window samples for log-gain predictor 

NONRW  30 Number of non-recursive window samples for weighting filter 

NPWSZ  100 Pitch analysis window size (samples) 

NUPDATE  4 Predictor update period (in terms of vectors) 

PPFTH  0.6 Tap threshold for turning off pitch postfilter 

PPFZCF  0.15 Pitch postfilter zero controlling factor 

SPFPCF  0.75 Short-term postfilter pole controlling factor 

SPFZCF  0.65 Short-term postfilter zero controlling factor 

TAPTH  0.4 Tap threshold for fundamental pitch replacement 

TILTF  0.15 Spectral tilt compensation controlling factor 

WNCF  257/256 White noise correction factor 

WPCF γ2 0.6 Pole controlling factor of perceptual weighting filter 

WZCF γ1 0.9 Zero controlling factor of perceptual weighting filter 
 



26 Recommendation G.728 

 

TABLE  2/G.728 

LD-CELP internal processing variables 

Name Array index 
range 

Equivalent 
symbol Initial value Description 

A 1 to LPC+1 –ai–1 1,0,0,... Synthesis filter coefficients 

AL 1 to 3  Annex D 1 kHz lowpass filter denominator coefficients 

AP 1 to 11 –āi–1 1,0,0,... Short-term postfilter denominator coefficients 

APF 1 to 11 –∼ai–1 1,0,0,... 10th-order LPC filter coefficients 

ATMP 1 to LPC+1 –ai–1  Temporary buffer for synthesis filter 
coefficients 

AWP 1 to LPCW+1  1,0,0,... Perceptual weighting filter denominator 
coefficients 

AWZ 1 to LPCW+1  1,0,0,... Perceptual weighting filter numerator 
coefficients 

AWZTMP 1 to LPCW+1  1,0,0,... Temporary buffer for weighting filter 
coefficients 

AZ 1 to 11 -b̄i–1 1,0,0,... Short-term postfilter numerator coefficients 

B 1 b 0 Long-term postfilter coefficients 

BL 1 to 4  Annex D 1 kHz lowpass filter numerator coefficients 

DEC –34 to 25 d̄(n) 0,0,...,0 4:1 decimated LPC prediction residual 

D –139 to 100 d(k) 0,0,...,0 LPC prediction residual 

ET 1 to IDIM e(n) 0,0,...,0 Gain-scaled excitation vector 

FACV 1 to LPC+1 λi–1 Annex C Synthesis filter BW broadening vector 

FACGPV 1 to LPCLG+1 λg
i–1 Annex C Gain predictor BW broadening vector 

G2 1 to NG bi Annex B Two times gain levels in gain codebook 

GAIN 1 σ(n)  Excitation gain 

GB 1 to NG–1 di Annex B Mid-point between adjacent gain levels 

GL 1 gl 1 Long-term postfilter scaling factor 

GP 1 to LPCLG+1  –αi–1 1,–1,0,0,... Log-gain linear predictor coefficients 

GPTMP 1 to LPCLG+1  –αi–1  Temporary array for log-gain linear predictor 
coefficients 

GQ 1 to NG gi Annex B Gain levels in the gain codebook 

GSQ 1 to NG ci Annex B Squares of gain levels in gain codebook 
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TABLE  2/G.728 (cont.) 

Name Array index 
range 

Equivalent 
symbol Initial value Description 

GSTATE 1 to LPCLG δ(n) –32,–32,...,–32 Memory of the log-gain linear predictor 

GTMP 1 to 4  –32,–32,–32,–32 Temporary log-gain buffer 

H 1 to IDIM h(n) 1,0,0,0,0 Impulse response vector of F(z)W(z) 

ICHAN 1   Best codebook index to be transmitted 

ICOUNT 1   Speech vector counter (indexed from 1 to 4) 

IG 1 i  Best 3-bit gain codebook index 

IP 1  IPINIT b) Address pointer to LPC prediction residual 

IS 1 j  Best 7-bit shape codebook index 

KP 1 p  Pitch period of the current frame 

KP1 1 p̂ 50 Pitch period of the previous frame 

PN 1 to IDIM p(n)  Correlation vector for codebook search 

PTAP 1 β  Pitch predictor tap computed by block 83 

R 1 to NR+1 a)   Autocorrelation coefficients 

RC 1 to NR a)   Reflection coefficients, also as a scratch 
array  

RCTMP 1 to LPC   Temporary buffer for reflection coefficients 

REXP 1 to LPC+1  0,0,...,0 Recursive part of autocorrelation,  
synthesis filter 

REXPLG 1 to LPCLG+1  0,0,...,0 Recursive part of autocorrelation, log-gain 
predictor 

REXPW 1 to LPCW+1  0,0,...,0 Recursive part of autocorrelation, 
weighting filter 

RTMP 1 to LPC+1   Temporary buffer for autocorrelation 
coefficients  

S 1 to IDIM s(n) 0,0,...,0 Uniform PCM input speech vector 

SB 1 to 105  0,0,...,0 Buffer for previously quantized speech 

SBLG 1 to 34  0,0,...,0 Buffer for previous log-gain 

SBW 1 to 60  0,0,...,0 Buffer for  previous input speech 

SCALE 1   Unfiltered postfilter scaling factor 
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TABLE  2/G.728  (Cont.) 

Name Array index 
range 

Equivalent 
symbol Initial value Description 

SCALEFIL 1  1 Lowpass filtered postfilter scaling factor 

SD 1 to IDIM sd(k)  Decoded speech buffer 

SPF 1 to IDIM   Postfiltered speech vector 

SPFPCFV 1 to 11 SPFPCFi–1 Annex C Short-term postfilter pole controlling vector 

SPFZCFV 1 to 11 SPFZCFi–1 Annex C Short-term postfilter zero controlling vector 

SO 1 so(k)  A-law or µ-law PCM input speech sample 

SU 1 su(k)  Uniform PCM input speech sample 

ST –239 to IDIM sq(n) 0,0,...,0 Quantized speech vector 

STATELPC 1 to LPC  0,0,...,0 Synthesis filter memory 

STLPCI 1 to 10  0,0,...,0 LPC inverse filter memory 

STLPF 1 to 3  0,0,0 1 kHz lowpass filter memory 

STMP 1 to 4*IDIM  0,0,...,0 Buffer for perceptually weighted filter hybrid 
window 

STPFFIR 1 to 10  0,0,...,0 Short-term postfilter memory, all-zero section 

STPFIIR 10  0,0,...,0 Short-term postfilter memory, all-pole section 

SUMFIL 1   Sum of absolute value of postfiltered speech 

SUMUNFIL 1   Sum of absolute value of decoded speech 

SW 1 to IDIM v(n)  Perceptually weighted speech vector 

TARGET 1 to IDIM x̂(n); x(n)  VQ target vector (gain-normalized) 

TEMP 1 to IDIM   Scratch array for temporary working space 

TILTZ 1 µ 0 Short-term postfilter tilt-compensation 
coefficients 

WFIR 1 to LPCW  0,0,...,0 Memory of weighting filter 4, all-zero portion 

WIIR 1 to LPCW  0,0,...,0 Memory of weighting filter 4, all-pole portion 

WNR 1 to 105 wm(k) Annex A Window function for synthesis filter 

WNRLG 1 to 34 wm(k) Annex A Window function for log-gain predictor 

WNRW 1 to 60 wm(k) Annex A Window function for weighting filter 
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5.3 Input PCM format conversion (block 1) 

Input: SO 

Output: SU 

Function: Convert A-law or µ-law or 16-bit linear input sample to uniform PCM sample. 

Since the operation of this block is completely defined in Recommendations G.721 or G.711, we will not repeat it here. 
However, some scaling may be necessary to conform to this description’s specification of an input range of – 4 4095 to 
+ 4 095 (see § 3.1.1). 

 

 

5.4 Vector buffer (block 2) 

Input: SU 

Output: S 

Function: Buffer five consecutive uniform PCM speech samples to form a single 5-dimensional speech vector. 

 

 

TABLE  G-728  (cont.) 

Name Array index 
range 

Equivalent 
symbol Initial value Description 

WPCFV 1 to LPCW+1 γi–1
2  Annex C Perceptual weighting filter pole controlling 

vector 

WS 1 to 105   Work space array for intermediate variables 

WZCFV 1 to LPCW+1 γ
i–1
1  Annex C Perceptual weighting filter zero controlling 

vector 

Y 1 to 
IDIM*NCWD 

yj Annex B Shape codebook array 

Y2 1 to NCWD Ej Energy of yj Energy of convolved shape codevector 

YN 1 to IDIM y(n)  Quantized excitation vector 

ZIRWFIR 1 to LPCW  0,0,...,0 Memory of weighting filter 10, all-zero 
portion 

ZIRWIIR 1 to LPCW  0,0,...,0 Memory of weighting filter 10, all-pole 
portion 

a) NR = Max(LPCW,LPCLG)>IDIM. 
b) IPINIT = NPWSZ–NFRSZ+IDIM. 
Note – The asterisk (*) denotes arithmetic multiplication. 
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5.5 Adapter for perceptual weighting filter (block 3, Figure 4a)/G.728) 

 The three blocks (36, 37 and 38) in Figure 4a)/G.728 are now specified in detail below. 

 

HYBRID  WINDOWING  MODULE  (block 36) 

 

Input: STMP 

Output: R 

Function: Apply the hybrid window to input speech and compute autocorrelation coefficients. 

The operation of this module is now described below, using a “Fortran-like” style, with loop boundaries indicated by 
indentation and comments on the right-hand side of “|”. The following algorithm is to be used once every adaptation 
cycle (20 samples). The STMP array holds 4-consecutive input speech vectors up to the second speech vector of the 
current adaptation cycle. That is, STMP(1) through STMP(5) is the third input speech vector of the previous adaptation 
cycle (zero initially), STMP(6) through STMP(10) is the fourth input speech vector of the previous adaptation cycle 
(zero initially), STMP(11) through STMP(15) is the first input speech vector of the current adaptation cycle, and 
STMP(16) through STMP(20) is the second input speech vector of the current adaptation cycle. 

 

N1 = LPCW + NFRSZ 
N2 = LPCW + NONRW 
N3 = LPCW + NFRSZ + NONRW 

|  Compute some constants (can be 
|  precomputed and stored in memory) 

For N = 1,2,..,N2, do the next line 
 SBW(N) = SBW(N + NFRSZ) 
 
For N = 1,2,..,NFRSZ, do the next line 
 SBW(N2 + N) = STMP(N) 

 
|  Shift the old signal buffer 
 
|  Shift in the new signal 
|  SBW(N3) is the newest sample 

K = 1 
For N = N3,N3 — 1,..,3,2,1, do the next two lines 
 WS(N) = SBW(N) * WNRW(K) 
 K = K + 1 

 
 
|  Multiply the window function  

For I = 1,2,..,LPCW + 1, do the next four lines 
 TMP = 0 
 For N = LPCW + 1,LPCW + 2,..,N1, do the next line 
  TMP = TMP + WS(N) * WS(N + 1 — I) 
 REXPW(I) = (1/2) * REXPW(I) + TMP 

 
 
 
 
|  Update the recursive component 

For I = 1,2,..,LPCW + 1, do the next three lines 
 R(I) = REXPW(I) 
 For N = N1 + 1,N1 + 2,..,N3, do the next line 
  R(I) = R(I) + WS(N) * WS(N + 1 — I) 

 
 
 
|  Add the non-recursive component 

R(1) = R(1) * WNCF |  White noise correction 
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LEVINSON-DURBIN  RECURSION  MODULE  (block 37) 

 

Input: R (output of block 36) 

Output: AWZTMP 

Function: Convert autocorrelation coefficients to linear predictor coefficients. 

This block is executed once every 4-vector adaptation cycle. It is done at ICOUNT = 3 after the processing of block 36 
has finished. Since the Levinson-Durbin recursion is well-known prior art, the algorithm is given below without 
explanation. 

 

If R(LPCW + 1) = 0, go to LABEL 
 
If R(1)  ≤  0, go to LABEL 
 
RC(1) = R(2)/R(1) 
AWZTMP(1) = 1 
AWZTMP(2) = RC(1) 
ALPHA = R(1) + R(2) * RC(1) 
If ALPHA ≤ 0, go to LABEL 

|  Skip if zero 
 
|  Skip if zero signal 
| 
 
| 
|  First-order predictor 
| 
|  Abort if ill-conditioned 

For MINC = 2,3,4,..,LPCW, do the following: 
 SUM = 0 
 For IP = 1,2,3,..,MINC, do the next two lines 
  N1 = MINC — IP + 2 
  SUM = SUM + R(N1) * AWZTMP(IP) 
 
 RC(MINC) = —SUM/ALPHA 
 MH = MINC/2 + 1 
 For IP = 2,3,4,..,MH, do the next four lines 
  IB = MINC — IP + 2 
  AT = AWZTMP(IP) + RC(MINC) * AWZTMP(IB) 
  AWZTMP(IB) = AWZTMP(IB) + RC(MINC) AWZTMP(IP) 
  AWZTMP(IP) = AT 

 
 
 
 
 
| 
|  Reflection coefficients 
| 
 
 
| 
|  Predictor coefficients 
| 

 AWZTMP(MINC + 1) = RC(MINC)  
 ALPHA = ALPHA + RC(MINC) * SUM 
 If Alpha ≤ 0, go to LABEL 

| 
|  Prediction residual energy 
|  Abort if ill-conditioned 
| 

Repeat the above for the next MINC  

Exit this program |  Program terminates normally if  
|  execution proceeds to here 

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 38, do not update the weighting filter 
coefficients. (That is, use the weighting filter coefficients of the previous adaptation cycle.) 
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WEIGHTING  FILTER  COEFFICIENT  CALCULATOR  (block 38) 

 

Input: AWZTMP 

Outputs: AWZ, AWP 

Function: Calculate the perceptual weighting filter coefficients from the linear predictor coefficients for input 
speech. 

This block is executed once every adaptation cycle. It is done at ICOUNT = 3 after the processing of block 37 has 
finished. 

 

For  I = 2,3,..,LPCW + 1, do the next line 
 AWP(I) = WPCFV(I) * AWZTMP(I) 
 
For I = 2,3,..,LPCW + 1, do the next line 
 AWZ(I) = WZCFV(I) * AWZTMP(I) 

| 
|  Denominator coefficients 
 
| 
|  Numerator coefficients 
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5.6 Backward synthesis filter adapter  (block 23, Figure 5/G.728) 

 The three blocks (49, 50 and 51) in Figure 5/G.728 are specified below. 

 

HYBRID  WINDOWING  MODULE  (block 49) 

 

Input: STTMP 

Output: RTMP 

Function: Apply the hybrid window to quantized speech and compute autocorrelation coefficients. 

The operation of this block is essentially the same as in block 36, except for some substitutions of parameters and 
variables, and for the sampling instant when the autocorrelation coefficients are obtained. As described in § 3, the 
autocorrelation coefficients are computed based on the quantized speech vectors up to the last vector in the previous 
4-vector adaptation cycle. In other words, the autocorrelation coefficients used in the current adaptation cycle are based 
on the information contained in the quantized speech up to the last (20-th) sample of the previous adaptation cycle. (This 
is in fact how we define the adaptation cycle.) The STTMP array contains the four quantized speech vectors of the 
previous adaptation cycle. 

 

N1 = LPC + NFRSZ 
N2 = LPC + NONR 
N3 = LPC + NFRSZ + NONR 

|  Compute some constants (can be 
|  precomputed and stored in memory) 

For N = 1,2,..,N2, do the next line 
 SB(N) = SB(N + NFRSZ) 
For N = 1,2,..,NFRSZ, do the next line 
 SB(N2 + N) = STTMP(N) 

 
|  Shift the old signal buffer 
 
|  Shift in the new signal 
|  SB(N3) is the newest sample 

K = 1 
For N = N3,N3 — 1,..,3,2,1, do the next two lines 
 WS(N) = SB(N) * WNR(K) 
 K = K + 1 

 
 
|  Multiply the window function 

For I = 1,2,..,LPC + 1, do the next four lines 
 TMP = 0 
 For N = LPC + 1,LPC + 2,..,N1, do the next line 
  TMP = TMP + WS(N) * WS(N + 1 — I) 
 REXP(I) = (3/4) * REXP(I) + TMP 

 
 
 
 
|  Update the recursive component 

For I = 1,2,..,LPC + 1, do the next three lines 
 RTMP(I) = REXP(I) 
 For N = N1 + 1,N1 + 2,..,N3, do the next line 
  RTMP(I) = RTMP(I) + WS(N) * WS(N + 1 — I) 

 
 
 
 
|  Add the non-recursive component 

RTMP(1) = RTMP(1) * WNCF |  White noise correction 
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LEVINSON-DURBIN  RECURSION  MODULE  (block 50) 

 

Input: RTMP 

Output: ATMP 

Function: Convert autocorrelation coefficients to synthesis filter coefficients. 

The operation of this block is exactly the same as in block 37, except for some substitutions of parameters and variables. 
However, special care should be taken when implementing this block. As described in § 3, although the autocorrelation 
RTMP array is available at the first vector of each adaptation cycle, the actual updates of synthesis filter coefficients will 
not take place until the third vector. This intentional delay of updates allows the real-time hardware to spread the 
computation of this module over the first three vectors of each adaptation cycle. While this module is being executed 
during the first two vectors of each cycle, the old set of synthesis filter coefficients (the array “A”) obtained in the 
previous cycle is still being used. This is why we need to keep a separate array ATMP to avoid overwriting the old “A” 
array. Similarly, RTMP, RCTMP, ALPHATMP, etc. are used to avoid interference to other Levinson-Durbin recursion 
modules (blocks 37 and 44). 

 

If RTMP(LPC + 1) = 0, go to LABEL 
 
If RTMP(1) ≤ 0, go to LABEL 
 
RCTMP(1) = —RTMP(2)/RTMP(1) 
ATMP(1) = 1 
ATMP(2) = RCTMP(1) 
ALPHATMP = RTMP(1) + RTMP(2) * RCTMP(1) 
If ALPHATMP ≤ 0, go to LABEL 

|  Skip if zero 
| 
|  Skip if zero signal 
| 
 
| 
|  First-order predictor 
| 
|  Abort if ill-conditioned 

For MINC = 2,3,4,..,LPC, do the following: 
 SUM = 0 
 For IP = 1,2,3,..,MINC, do the next two lines 
  N1 = MINC — IP + 2 
  SUM = SUM + RTMP(N1) * ATMP(IP) 

 

 RCTMP(MINC) = —SUM/ALPHATMP 
 MH = MINC/2 + 1 
 For IP = 2,3,4,..,MH, do the next four lines 
  IB = MINC — IP + 2 
  AT = ATMP(IP) + RCTMP(MINC) * ATMP(IB) 
  ATMP(IB) = ATMP(IB) + RCTMP(MINC) * ATMP(IP) 
  ATMP(IP) = AT 

| 
|  Reflection coefficients 
| 
 
 
| 
|  Update predictor coefficients 

 ATMP(MINC + 1) = RCTMP(MINC) 
 ALPHATMP = ALPHATMP + RCTMP(MINC) * SUM 
 If ALPHATMP ≤ 0, go to LABEL 

| 
|  Predictor residual energy 
|  Abort if ill-conditioned 
| 

Repeat the above for the next MINC  

Exit this program |  Recursion completed normally if 
|  execution proceeds to here 

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 51, do not update the synthesis filter 
coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.) 
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BANDWIDTH  EXPANSION  MODULE  (block 51) 
 
Input: ATMP 

Output: A 

Function: Scale synthesis filter coefficients to expand the bandwidths of spectral peaks. 

This block is executed only once every adaptation cycle. It is done after the processing of block 50 has finished and 
before the execution of blocks 9 and 10 at ICOUNT = 3 take place. When the execution of this module is finished and 
ICOUNT = 3, then we copy the ATMP array to the “A” array to update the filter coefficients. 

 

For I = 2,3,..,LPC + 1, do the next line 
 ATMP(I) = FACV(I) * ATMP(I) 

| 
|  Scale coefficients 

Wait until ICOUNT = 3, then 
For I = 2,3,..,LPC + 1, do the next line 
 A(I) = ATMP(I) 

| 
|  Update coefficients at the third 
|  vector of each cycle 

 

 

5.7 Backward vector gain adapter (block 20, Figure 6/G.728) 

 The blocks in Figure 6/G.728 are specified below. For implementation efficiency, some blocks are described 
together as a single block (they are shown separately in Figure 6/G.728 just to explain the concept). All blocks in Figure 
6/G.728 are executed once every speech vector, except for blocks 43, 44 and 45, which are executed only when 
ICOUNT = 2. 
 

1-VECTOR  DELAY,  RMS  CALCULATOR,  AND  LOGARITHM  CALCULATOR 
(blocks 67, 39 and 40) 

 
Input: ET 

Output: ETRMS 

Function: Calculate the dB level of the root-mean square (RMS) value of the previous gain-scaled excitation vector. 

When these three blocks are executed (which is before the VQ codebook search), the ET array contains the gain-scaled 
excitation vector determined for the previous speech vector. Therefore, the 1-vector delay unit (block 67) is 
automatically executed. (It appears in Figure 6/G.728 just to enhance clarity.) Since the logarithm calculator 
immediately follows the RMS calculator, the square root operation in the RMS calculator can be implemented as a 
“divide-by-two” operation to the output of the logarithm calculator. Hence, the output of the logarithm calculator (the 
dB value) is 10 * log10 (energy of ET/IDIM). To avoid overflow of logarithm value when ET = 0 (after system 
initialization or reset), the argument of the logarithm operation is clipped to 1 if it is too small. Also, we note that 
ETRMS is usually kept in an accumulator, as it is a temporary value which is immediately processed in block 42. 

 

ETRMS = ET(1) * ET(1) 
For K = 2,3,..,IDIM, do the next line 
 ETRMS = ETRMS + ET(K) * ET(K) 

| 
|  Compute energy of ET 
| 

ETRMS = ETRMS * DIMINV 
If ETRMS < 1, set ETRMS = 1 
ETRMS = 10 * log10 (ETRMS) 

|  Divide by IDIM 
|��Clip to avoid log overflow 
|��Compute dB value 
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LOG-GAIN  OFFSET  SUBTRACTOR  (block 42) 
 
Inputs: ETRMS, GOFF 

Output: GSTATE(1) 

Function: Subtract the log-gain offset value held in block 41 from the output of block 40 (dB gain level). 

 

GSTATE(1) = ETRMS — GOFF  

 

 

HYBRID  WINDOWING  MODULE  (block 43) 
 
Input: GTMP 

Output: R 

Function: Apply the hybrid window to offset-subtracted log-gain sequence and compute autocorrelation 
coefficients. 

The operation of this block is very similar to block 36, except for some substitutions of parameters and variables, and 
for the sampling instant when the autocorrelation coefficients are obtained. 

An important difference between block 36 and this block is that only four (rather than 20) gain samples are fed to this 
block each time the block is executed. 

The log-gain predictor coefficients are updated at the second vector of each adaptation cycle. The GTMP array below 
contains four-offset-removed log-gain values, starting from the log-gain of the second vector of the previous adaptation 
cycle to the log-gain of the first vector of the current adaptation cycle, which is GTMP(1). GTMP(4) is the 
offset-removed log-gain value from the first vector of the current adaptation cycle, the newest value. 

 

N1 = LPCLG + NUPDATE 
N2 = LPCLG + NONRLG 
N3 = LPCLG + NUPDATE + NONRLG 

|  Compute some constants (can be 
|  precomputed and stored in memory) 

For N = 1,2,..,N2, do the next line 
 SBLG(N) = SBLG(N + NUPDATE) 
For N = 1,2,..,NUPDATE, do the next line 
 SBLG(N2 + N) = GTMP(N) 

|  Shift the old signal buffer 
 
|  Shift in the new signal; 
|  SBLG(N3) is the newest sample 

K = 1 
For N = N3,N3 — 1,..,3,2,1, do the next two lines 
 WS(N) = SBLG(N) * WNRLG(K) 
 K = K + 1 

 
 
|  Multiply the window function 

For I = 1,2,..,LPCLG + 1, do the next four lines 
 TMP = 0 
 For N = LPCLG + 1,LPCLG + 2,..,N1, do the next line 
  TMP = TMP + WS(N) * WS(N + 1 — I) 
 REXPLG(I) = (3/4) * REXPLG(I) + TMP 

 
 
 
 
|  Update the recursive component 

For I = 1,2,..,LPCLG + 1, do the next three lines 
 R(I) = REXPLG(I) 
 For N = N1 + 1,N1 + 2,..,N3, do the next line 
  R(I) = R(I) + WS(N) * WS(N + 1 — I) 

 
 
 
|  Add the non-recursive component 

R(1) = R(1) * WNCF |  White noise correction 
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LEVINSON-DURBIN  RECURSION  MODULE  (block 44) 
 
Input: R (output of block 43) 

Output: GPTMP 

Function: Convert autocorrelation coefficients to log-gain predictor coefficients. 

The operation of this block is exactly the same as in block 37, except for the substitutions of parameters and variables 
indicated below: replace LPCW by LPCLG and AWZ by GP. This block is executed only when ICOUNT = 2, after 
block 43 is executed. Note that as the first step, the value of R(LPCLG + 1) will be checked. If it is zero, we skip blocks 
44 and 45 without updating the log-gain predictor coefficients. (That is, we keep using the old log-gain predictor 
coefficients determined in the previous adaptation cycle.) This special procedure is designed to avoid a very small glitch 
that would have otherwise happened right after system initialization or reset. In case the matrix is ill-conditioned, we 
also skip block 45 and use the old values. 

 

 

BANDWIDTH  EXPANSION  MODULE  (block 45) 
 
Input: GPTMP 

Output: GP 

Function: Scale log-gain predictor coefficients to expand the bandwidths of spectral peaks. 

This block is executed only when ICOUNT = 2, after block 44 is executed. 

 

For I = 2,3,..,LPCLG + 1, do the next line 
 GP(I) = FACGPV(I) * GPTMP(I) 

| 
|  Scale coefficients 

 

 

LOG-GAIN  LINEAR  PREDICTOR  (block 46) 
 
Inputs: GP, GSTATE 

Output: GAIN 

Function: Predict the current value of the offset-subtracted log-gain. 

 

GAIN = 0 
For I = LGLPC,LPCLG — 1,..,3,2, do the next two lines 
 GAIN = GAIN — GP(I + 1) * GSTATE(I) 
 GSTATE(I) = GSTATE(I — 1) 

GAIN = GAIN — GP(2) * GSTATE(1) 

 

 

 

LOG-GAIN  OFFSET  ADDER  (between blocks 46 and 47) 
 
Inputs: GAIN, GOFF 

Output: GAIN 

Function: Add the log-gain offset value back to the log-gain predictor output. 

 

GAIN = GAIN + GOFF  
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LOG-GAIN  LIMITER  (block 47) 
 
Input: GAIN 

Output: GAIN 

Function: Limit the range of the predicted logarithmic gain. 

 

If GAIN < 0, set GAIN = 0 
If GAIN > 60, set GAIN = 60 

|  Correspond to linear gain 1 
|  Correspond to linear gain 1000 

 

 

INVERSE  LOGARITHM  CALCULATOR  (block 48) 
 
Input: GAIN 

Output: GAIN 

Function: Convert the predicted logarithmic gain (in dB) back to linear domain. 

 

GAIN = 10(GAIN/20)  

 

 

5.8 Perceptual weighting filter 
 

PERCEPTUAL  WEIGHTING  FILTER  (block 4) 
 
Inputs: S, AWZ, AWP 

Output: SW 

Function: Filter the input speech vector to achieve perceptual weighting. 

 

For K = 1,2,..,IDIM, do the following: 
 SW(K) = S(K) 
 For J = LPCW,LPCW — 1,..,3,2, do the next two lines 
  SW(K) = SW(K) + WFIR(J) * AWZ(J + 1) 
  WFIR(J) = WFIR(J — 1) 

 
 
 
| 
|  All-zero part of the filter 

 SW(K) = SW(K) + WFIR(1) * AWZ(2) 
 WFIR(1) = S(K) 

| 
|  Handle last one differently 

 For J = LPCW,LPCW — 1,..,3,2, do the next two lines 
  SW(K) = SW(K) — WIIR(J) * AWP(J + 1) 
  WIIR(J) = WIIR(J — 1) 

| 
|  All-pole part of the filter 

 SW(K) = SW(K) — WIIR(1) * AWP(2) 
 WIIR(1) = SW(K) 

| 
|  Handle last one differently 

Repeat the above for the next K  
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5.9 Computation of zero-input response vector 

 Subsection 3.5 explains how a “zero-input response vector” r(n) is computed by blocks 9 and 10. Now the 
operation of these two blocks during this phase is specified below. Their operation during the “memory update phase” 
will be described later. 
 

SYNTHESIS  FILTER  (block 9)  DURING ZERO-INPUT  RESPONSE  COMPUTATION 
 
Inputs: A, STATELPC 

Output: TEMP 

Function: Compute the zero-input response vector of the synthesis filter. 

 

For K = 1,2,..,IDIM, do the following: 
 TEMP(K) = 0 
 For J = LPC,LPC — 1,..,3,2, do the next two lines 
  TEMP(K) = TEMP(K) — STATELPC(J) * A(J + 1) 
  STATELPC(J) = STATELPC(J — 1) 

 
 
 
|  Multiply-add 
|  Memory shift 

 TEMP(K) = TEMP(K) — STATELPC(1) * A(2) 
 STATELPC(1) = TEMP(K) 

| 
|  Handle last one differently 

Repeat the above for the next K  

 

 

PERCEPTUAL  WEIGHTING  FILTER  DU  RING  ZERO-INPUT 
RESPONSE  COMPUTATION  (block 10) 

 
Inputs: AWZ, AWP, ZIRWFIR, ZIRWIIR, TEMP computed above 

Output: ZIR 

Function: Compute the zero-input response vector of the perceptual weighting filter. 

 

For K = 1,2,..,IDIM, do the following: 
 TMP = TEMP(K) 
  For  J = LPCW,LPCW — 1,..,3,2, do the next two lines 
   TEMP(K) = TEMP(K) + ZIRWFIR(J) * AWZ(J + 1) 
   ZIRWFIR(J) = ZIRWFIR(J — 1) 

 
 
 
| 
|  All-zero part of the filter 

 TEMP(K) = TEMP(K) + ZIRWFIR(1) * AWZ(2) 
 ZIRWFIR(1) = TMP 

| 

|  Handle last one differently 

 For J = LPCW,LPCW — 1,..,3,2, do the next two lines 
  TEMP(K) = TEMP(K) — ZIRWIIR(J) * AWP(J + 1) 
  ZIRWIIR(J) = ZIRWIIR(J — 1) 

 
| 
|��All-pole part of the filter 

 ZIR(K) = TEMP(K) — ZIRWIIR(1) * AWP(2) 
 ZIRWIIR(1) = ZIR(K) 

| 
|  Handle last one differently 

Repeat the above for the next K  
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5.10 VQ target vector computation 
 

VQ  TARGET  VECTOR  COMPUTATION  (block 11) 
 
Inputs: SW, ZIR 

Output: TARGET 

Function: Subtract the zero-input response vector from the weighted speech vector. 

Note — ZIR(K) = ZIRWIIR(IDIM + 1 — K ) from block 10 above. It does not require a separate storage location. 

 

For K = 1,2,..,IDIM, do the next line 
 TARGET(K) = SW(K) — ZIR(K) 

 

 

 

5.11 Codebook search module (block 24) 

 The seven blocks contained within the codebook search module (block 24) are specified below. Again, some 
blocks are described as a single block for convenience and implementation efficiency. Blocks 12, 14 and 15 are 
executed once every adaptation cycle when ICOUNT = 3, while the other blocks are executed once every speech vector. 
 

IMPULSE  RESPONSE  VECTOR  CALCULATOR  (block 12) 
 
Inputs: A, AWZ, AWP 

Output: H 

Function: Compute the impulse response vector of the cascaded synthesis filter and perceptual weighting filter. 

This block is executed when ICOUNT = 3 and after the execution of block 23 and 3 is completed (i.e. when the new sets 
of A, AWZ, AWP coefficients are ready). 

 

TEMP(1) = 1 
RC(1) = 1 
For K = 2,3,..,IDIM, do the following: 
 A0 = 0 
 A1 = 0 
 A2 = 0 
 For I = K,K — 1,..,3,2, do the next five lines 
  TEMP(I) = TEMP(I — 1) 
  RC(I) = RC(I — 1) 
  A0 = A0 — A(I) * TEMP(I) 
  A1 = A1 + AWZ(I) * TEMP(I) 
  A2 = A2 — AWP(I) * RC(I) 

|  TEMP = synthesis filter memory 
|  RC = W(z) all-pole part memory 
 
 
 
 
 
 
| 
|  Filtering 
| 

 TEMP(1) = A0 
 RC(1) = A0 + A1 + A2 
Repeat the above indented section  for the next K 

 

ITMP = IDIM + 1 
For K = 1,2,..,IDIM, do the next line 
 H(K) = RC(ITMP — K) 

|  Obtain h(n) by reversing the 
|  order of the memory of all-pole 
|  section of W(z) 
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SHAPE  CODEVECTOR  CONVOLUTION  MODULE  AND  ENERGY 
TABLE CALCULATOR  (blocks 14 and 15) 

 
Inputs: H, Y 

Output: Y2 

Function: Convolve each shape codevector with the impulse response obtained in block 12, then compute and store 
the energy of the resulting vector. 

This block is also executed when ICOUNT = 3 after the execution of block 12 is completed. 

 

For J = 1,2,..,NCWD, do the following: 
 J1 = (J — 1) * IDIM 
 For K = 1,2,..,IDIM, do the next four lines 
  K1 = J1 + K + 1 
  TEMP(K) = 0 
  For I = 1,2,..,K, do the next line 
   TEMP(K) = TEMP(K) + H(I) * Y(K1 — I) 

Repeat the above 4 lines for the next K 

|  One codevector per loop 
 
 
 
 
| 
|  Convolution 

Y2(J) = 0 
For K = 1,2,..,IDIM, do the next line 
 Y2(J) = Y2(J) + TEMP(K) * TEMP(K) 

 
| 
|  Compute energy 

Repeat the above for the next J  
 
 

VQ  TARGET  VECTOR  NORMALIZATION  (block 16) 
 
Inputs: TARGET, GAIN 

Output: TARGET 

Function: Normalize the VQ target vector using the predicted excitation gain. 

 

TMP = 1 / GAIN 
For K = 1,2,..,IDIM, do the next line 
 TARGET(K) = TARGET(K) * TMP 

 

 
 

TIME-REVERSED  CONVOLUTION  MODULE  (block 13) 
 
Inputs: H, TARGET (output from block 16) 

Output: PN 

Function: Perform time-reversed convolution of the impulse response vector and the normalized VQ target vector 
(to obtain the vector p(n)). 

Note — The vector PN can be kept in temporary storage. 

 

For K = 1,2,..,IDIM, do the following: 
 K1 = K — 1 
 PN(K) = 0 
 For J = K,K + 1,..,IDIM, do the next line 
  PN(K) = PN(K) + TARGET(J) * H(J — K1) 

 

Repeat the above for the next K  
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ERROR  CALCULATOR  AND  BEST  CODEBOOK  INDEX  SELECTOR 
(blocks 17 and 18) 

 
Inputs: PN, Y, Y2, GB, G2, GSQ 

Outputs: IG, IS, ICHAN 

Function: Search through the gain codebook and the shape codebook to identify the best combination of gain 
codebook index and shape codebook index, and combine the two to obtain the 10-bit best codebook 
index. 

Note — The variable COR used below is usually kept in an accumulator, rather than storing it in memory. The variables 
IDXG and J can be kept in temporary registers, while IG and IS can be kept in memory. 

 

Initialize DISTM tothe largest number representable in the hardware 
N1 = NG/2 
For J = 1,2,..,NCWD, do the following: 
 J1 = (J — 1) * IDIM 
 COR = 0 
 For K = 1,2,..,IDIM, do the next line 
  COR = COR + PN(K) * Y(J1 + K) 

 
 
 
 
 
| 
|  Compute inner product Pj 

 If COR > 0, then do the next five lines 
  IDXG = N1 
  For K = 1,2,..,N1 — 1, do the next “if” statement 
   If COR < GB(K) * Y2(J), do the next two lines 
    IDXG = K 
    GO TO LABEL 

 
 
 
 
|  Best positive gain found 

 If COR ≤ 0, then do the next five lines 
  IDXG = NG 
  For K = N1 + 1,N1 + 2,..,NG — 1, do the next “if” statement 
   If COR > GB(K) * Y2(J), do the next two lines 
    IDXG = K 
    GO TO LABEL 

 
 
 
 
|  Best negative gain found 

LABEL: D = —G2(IDXG) * COR + GSQ(IDXG) * Y2(J) |  Compute distortion D̂ 

 If D < DISTM, do the next three lines 
  DISTM = D 
  IG = IDXG 
  IS = J 

 
|  Save the lowest distortion and the 
|  best codebook indices so far 
| 

Repeat the above indented section for the next K  

ICHAN = (IS — 1) * NG + (IG — 1) |  Concatenate shape and gain  
|  codebook indices 

 

 

Transmit ICHAN through communication channel 

For serial bit stream transmission, the most significant bit of ICHAN should be transmitted first. 

If ICHAN is represented by the 10 bit word b9b8b7b6b5b4b3b2b1b0, then the order of the transmitted bits should be b9, 
and then b8, and then b7, ..., and finally b0. (b9 is the most significant bit.) 
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5.12 Simulated decoder (block 8) 

 Blocks 20 and 23 have been described earlier. Blocks 19, 21 and 22 are specified below. 

 

EXCITATION  VQ  CODEBOOK  (block 19) 

 

Inputs: IG, IS 

Output: YN 

Function: Perform table look-up to extract the best shape codevector and the best gain, then multiply them to get the 
quantized excitation vector. 

 

NN = (IS —1) * IDIM 
For K = 1,2,..,IDIM, do the next line 
 YN(K) = GQ(IG) * Y(NN + K) 

 

 

 

GAIN  SCALING  UNIT  (block 21) 

 

Inputs: GAIN, YN 

Output: ET 

Function: Multiply the quantized excitation vector by the excitation gain. 

 

For K = 1,2,..,IDIM, do the next line 
 ET(K) = GAIN * YN(K) 

 

 

 

SYNTHESIS  FILTER  (block 22) 

 

Inputs: ET, A 

Output: ST 

Function: Filter the gain-scaled excitation vector to obtain the quantized speech vector. 

As explained in § 3, this block can be omitted and the quantized speech vector can be obtained as a by-product of the 
memory update procedure to be described below. If, however, one wishes to implement this block anyway, a separate set 
of filter memory (rather than STATELPC) should be used for this all-pole synthesis filter. 
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5.13 Filter memory update for blocks 9 and 10 

 The following description of the filter memory update procedures for blocks 9 and 10 assumes that the 
quantized speech vector ST is obtained as a by-product of the memory updates. To safeguard possible overloading of 
signal levels, a magnitude limiter is built into the procedure so that the filter memory clips at MAX and MIN, where 
MAX and MIN are respectively the positive and negative saturation levels of A-law or µ-law PCM, depending on which 
law is used. 
 

FILTER  MEMORY  UPDATE  (blocks 9 and 10) 
 
Inputs: ET, A, AWZ, AWP, STATELPC, ZIRWFIR, ZIRWIIR 

Outputs: ST, STATELPC, ZIRWFIR, ZIRWIIR 

Function: Update the filter memory of blocks 9 and 10 and also obtain the quantized speech vector. 

 

ZIRWFIR(1) = ET(1) 
TEMP(1) = ET(1) 
For K = 2,3,..,IDIM, do the following: 
 A0 = ET(K) 
 A1 = 0 
 A2 = 0 
 For I = K,K — 1,..,2, do the next five lines 
  ZIRWFIR(I) = ZIRWFIR(I — 1) 
  TEMP(I) = TEMP(I — 1) 
 A0 = A0 — A(I) * ZIRWFIR(I) 
 A1 = A1 + AWZ(I) * ZIRWFIR(I) 
 A2 = A2 — AWP(I) * TEMP(I) 
 
 ZIRWFIR(1) = A0 
 TEMP(1) = A0 + A1 + A2 

|  ZIRWFIR now a scratch array 
 
 
 
 
 
 
 
 
|   
|  Compute zero-state responses at 
|  various stages of the cascaded 
|  filter 
| 

Repeat the above indented section for the next K  

 |  Now update filter memory by adding 
|  zero-state responses to zero-input  
|  responses 

For K = 1,2,..,IDIM, do the next four lines 
 STATELPC(K) = STATELPC(K) + ZIRWFIR(K) 
 If STATELPC(K) > MAX, set STATELPC(K) = MAX 
 If STATELPC(K) < MIN, set STATELPC(K) = MIN 
 ZIRWIIR(K) = ZIRWIIR(K) + TEMP(K) 

 
 
|  Limit the range 
| 

For I = 1,2,..,LPCW, do the next line 
 ZIRWFIR(I) = STATELPC(I) 

|  Now set ZIRWFIR to the right 
|  value 

I = IDIM + 1 
For K = 1,2,..,IDIM, do the next line 
 ST(K) = STATELPC(I — K) 

 
|  Obtain quantized speech by reversing 
|  order of synthesis filter memory 

 

 

5.14 Decoder (Figure 3/G.728) 

 The blocks in the decoder (Figure 3/G.728) are described below. Except for the output PCM format 
conversion block, all other blocks are exactly the same as the blocks in the simulated decoder (block 8) in 
Figure 2/G.728. 



   Recommendation G.728 45 

 The decoder only uses a subset of the variables in Table 2/G.728. If a decoder and an encoder are to be 
implemented in a single DSP chip, then the decoder variables should be given different names to avoid overwriting the 
variables used in the simulated decoder block of the encoder. For example, to name the decoder variables, we can add a 
prefix “d” to the corresponding variable names in Table 2/G.728. If a decoder is to be implemented as a stand-alone unit 
independent of an encoder, then there is no need to change the variable names. 

 The following description assumes a stand-alone decoder. Again, the blocks are executed in the same order as 
they are described below. 

 

DECODER  BACKWARD  SYNTHESIS  FILTER  ADAPTER  (block 33) 

 

Input: ST 

Output: A 

Function: Generate synthesis filter coefficients periodically from previously decoded speech. 

The operation of this block is exactly the same as block 23 of the encoder. 

 

 

DECODER  BACKWARD  VECTOR  GAIN  ADAPTER  (block 30) 

 

Input: ET 

Output: GAIN 

Function: Generate the excitation gain from previous gain-scaled excitation vectors. 

The operation of this block is exactly the same as block 20 of the encoder. 

 

 

DECODER  EXCITATION  VQ  CODEBOOK  (block 29) 

 

Input: ICHAN 

Output: YN 

Function: Decode the received best codebook index (channel index) to obtain the excitation vector. 

This block first extracts the 3-bit gain codebook index IG and the 7-bit shape codebook index IS from the received 
10-bit channel index. Then, the rest of the operation is exactly the same as block 19 of the encoder. 

 

ITMP = integer part of (ICHAN / NG) 
IG = ICHAN — ITMP * NG + 1 

|  Decode (IS — 1) 
|  Decode IG 

NN = ITMP * IDIM 
For K = 1,2,..,IDIM, do the next line 
 YN(K) = GQ(IG) * Y(NN + K) 
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DECODER  GAIN  SCALING  UNIT  (block 31) 
 
Inputs: GAIN, YN 

Output: ET 

Function: Multiply the excitation vector by the excitation gain. 

The operation of this block is exactly the same as block 21 of the encoder. 

 

 

DECODER  SYNTHESIS  FILTER  (block 32) 
 
Inputs: ET, A, STATELPC 

Output: ST 

Function: Filter the gain-scaled excitation vector to obtain the decoded speech vector. 

This block can be implemented as a straightforward all-pole filter. However, as mentioned in § 4.3, if the encoder 
obtains the quantized speech as a by-product of filter memory update (to save computation), and if potential 
accumulation of round-off error is a concern, then this block should compute the decoded speech in exactly the same 
way as in the simulated decoder block of the encoder. That is, the decoded speech vector should be computed as the sum 
of the zero-input response vector and the zero-state response vector of the synthesis filter. This can be done by the 
following procedure. 

 

For K = 1,2,..,IDIM, do the next seven lines 
 TEMP(K) = 0 
 For J = LPC,LPC — 1,..,3,2, do the next two lines 

  TEMP(K) = TEMP(K) — STATELPC(J) * A(J + 1) 
  STATELPC(J) = STATELPC(J — 1) 

 
 
 
|  Zero-input response 

 TEMP(K) = TEMP(K) — STATELPC(1) * A(2) 
 STATELPC(1) = TEMP(K) 

| 
|  Handle last one differently 

Repeat the above for the next K  

TEMP(1) = ET(1) 
For K = 2,3,..,IDIM, do the next five lines 
 A0 = ET(K) 
 For I = K,K — 1,..,2, do the next two lines 
  TEMP(I) = TEMP(I — 1) 
  A0 = A0 — A(I) * TEMP(I) 

 
 
 
 
 
|  Compute zero-state response 

 TEMP(1) = A0  

Repeat the above for the next K  

 |  Now update filter memory by adding 
|  zero-state responses to zero-input 
|  responses 

For K = 1,2,..,IDIM, do the next three lines 
 STATELPC(K) = STATELPC(K) + TEMP(K) 
 If STATELPC(K) > MAX, set STATELPC(K) = MAX 
 If STATELPC(K) < MIN, set STATELPC(K) = MIN 

 
|  ZIR + ZSR 
|  Limit the range 
| 

I = IDM + 1 
For K = 1,2,..,IDIM, do the next line 
 ST(K) = STATELPC(I — K) 

 
|  Obtain quantized speech by reversing 
|  order of synthesis filter memory 
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10th-ORDER  LPC  INVERSE  FILTER  (block 81) 
 
This block is executed once a vector, and the output vector is written sequentially into the last 20 samples of the LPC 
prediction residual buffer [i.e. D(81) through D(100)]. We use a pointer IP to point to the address of D(K) array samples 
to be written to. This pointer IP is initialized to NPWSZ — NFRSZ + IDIM before this block starts to process the first 
decoded speech vector of the first adaptation cycle (frame), and from there on IP is updated in the way described below. 
The 10th-order LPC predictor coefficients APF(I)s are obtained in the middle of Levinson-Durbin recursion by 
block 50, as described in § 4.6. It is assumed that before this block starts execution, the decoder synthesis filter 
(block 32 of Figure 3/G.728) has already written the current decoded speech vector into ST(1) through ST(IDIM). 

Inputs: ST, APF 

Output: D 

Function: Compute the LPC prediction residual for the current decoded speech vector. 

 

If IP = NPWSZ, then set IP = NPWSZ — NFRSZ |  Check and update IP 

 For K = 1,2,..,IDIM, do the next seven lines 
  ITMP = IP + K 
   D(ITMP) = ST(K) 
   For J = 10,9,..,3,2, do the next two lines 
    D(ITMP) = D(ITMP) + STLPCI(J) * APF(J + 1) 
    STLPCI(J) = STLPCI(J — 1) 
   D(ITMP) = D(ITMP) + STLPCI(1) * APF(2) 
   STLPCI(1) = ST(K) 

 
 
 
 
|  FIR filtering 
|  Memory shift 
|  Handle last one 
|  Shift in input 

IP = IP + IDIM |  Update IP 

 

 

PITCH  PERIOD  EXTRACTION  MODULE  (block 82) 
 
This block is executed once a frame at the third vector of each frame, after the third decoded speech vector is generated. 

Input: D 

Output: KP 

Function: Extract the pitch period from the LPC prediction residual. 

 

If ICOUNT ≠ 3, skip the execution of this block, 
otherwise, do the following: 
 
 For K = NPWSZ — NFRSZ + 1,..,NPWSZ, do the next seven lines 
 TMP = D(K) — STLPF(1) * AL(1) — STLPF(2) * 
 AL(2) — STLPF(3) * AL(3) 
 If K is divisible by 4, do the next two lines 
  N = K/4 

 
|  Lowpass filtering & 4:1 downsampling 
 
|  IIR filter 
 
 
|  Do FIR filtering only if needed 

  DEC(N) = TMP * BL(1) + STLPF(1) * BL(2) + STLPF(2) * BL(3) + STLPF(3) * BL(4)  

  STLPF(3) = STLPF(2) 
  STLPF(2) = STLPF(1) 
  STLPF(1) = TMP 

 
|  Shift lowpass filter memory 

M1 = KPMIN/4 
M2 = KPMAX/4 
CORMAX = most negative number of the machine 

|  Start correlation peak-picking in the 
|  decimated LPC residual domain 
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For J = M1,M1 + 1,..,M2, do the next six lines 
 TMP = 0 
 For N = 1,2,..,NPWSZ/4, do the next line 
  TMP = TMP + DEC(N) * DEC(N — J) 
 
 If TMP > CORMAX, do the next two lines 
  CORMAX = TMP 
  KMAX = J 
For N = —M2 + 1,—M2 + 2,..,(NPWSZ — NFRSZ)/4, do the next line 
 DEC(N) = DEC(N + IDIM) 

 
 
 
|  TMP = correlation in decimated domain 
 
|  Find maximum correlation and the 
|  corresponding lag 
 
|  Shift decimated LPC residual buffer 

M1 = 4 * KMAX — 3 
M2 = 4 * KMAX + 3 

|  Start correlation peak-picking in undecimated domain 

If M1 < KPMIN, set M1 = KPMIN 
If M2 > KPMAX, set M2 = KPMAX 
CORMAX = most negative number of the machine 
For J = M1,M1 + 1,..,M2, do the next six lines 
 TMP = 0 
 For K = 1,2,..,NPWSZ, do the next line 
  TMP = TMP + D(K) * D(K — J) 
 If TMP > CORMAX, do the next two lines 
  CORMAX = TMP 
  KP = J 

|  Check whether M1 out of range 
|  Check whether M2 out of range 
 
 
 
 
|  Correlation in undecimated domain 
 
|  Find maximum correlation and the 
|  corresponding lag 

M1 = KP1 — KPDELTA 
M2 = KP1 + KPDELTA 
 
If KP < M2 + 1, go to LABEL 
 
If M1 < KPMIN, set M1 =  KPMIN 
CMAX = most negative number of the machine 
 For J = M1,M1 + 1,..,M2, do the next six lines 
  TMP = 0 
  For K = 1,2,..,NPWSZ, do the next line 
   TMP = TMP + D(K) * D(K — J) 
  If TMP > CMAX, do the next two lines 
   CMAX = TMP 
   KPTMP = J 

|  Determine the range of search around 
|  the pitch period of previous frame 
 
|  KP can't be a multiple pitch if true 
 
|  Check whether M1 out of range 
 
|  Correlation in undecimated domain 
 
|  Find maximum correlation and the 
|  corresponding lag 

SUM = 0 
TMP = 0 
 
For K = 1,2,..,NPWSZ, do the next two lines 
 SUM = SUM + D(K — KP) * D(K — KP) 
 TMP = TMP + D(K — KPTMP) * D(K — KPTMP) 
If SUM = 0, set TAP = 0, otherwise, set TAP = CORMAX/SUM 
If TMP = 0, set TAP1 = 0, otherwise, set TAP1 = CMAX/TMP 
If TAP > 1, set TAP = 1 
If TAP < 0, set TAP = 0 
If TAP1 > 1, set TAP1 = 1 
If  TAP1 < 0, set TAP1 = 0 
 
 
If TAP1 > TAPTH * TAP, then set KP = KPTMP 

 
|  Start computing the tap weights 
 
 
 
 
 
|  Clamp TAP between 0 and 1 
 
|  Clamp TAP1 between 0 and 1 
 
|  Replace KP with fundamental pitch 
|  if TAP1 is large enough 

LABEL:  KP1 = KP |��Update pitch period of previous frame 

 For K = KPMAX + 1,—KPMAX + 2,..,NPWSZ — NFRSZ, do the next line 

  D(K) = D(K + NFRSZ) |  Shift the LPC residual buffer 
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PITCH  PREDICTOR  TAP  CALCULATOR  (block 83) 
 
This block is also executed once a frame at the third vector of each frame, right after the execution of block 82. This 
block shares the decoded speech buffer (ST(K) array) with the long-term postfilter 71, which takes care of the shifting of 
the array such that ST(1) through ST(IDIM) constitute the current vector of decoded speech, and 
ST(—KPMAX — NPWSZ + 1) through ST(0) are previous vectors of decoded speech. 

Inputs: ST, KP 

Output: PTAP 

Function: Calculate the optimal tap weight of the single-tap pitch predictor of the decoded speech. 

 

If ICOUNT ≠ 3, skip the execution of this block, 
otherwise, do the following: 
 SUM = 0 
 TMP = 0 
 For K = —NPWSZ + 1,— NPWSZ + 2,..,0, do the next two 
lines 
  SUM = SUM + ST(K — KP) * ST(K — KP) 
  TMP = TMP + ST(K) * ST(K — KP) 
 If SUM = 0, set PTAP = 0, otherwise, set PTAP = TMP/SUM 

 

 

 

LONG-TERM  POSTFILTER  COEFFICIENT  CALCULATOR  (block 84) 
 
This block is also executed once a frame at the third vector of each frame, right after the execution of block 83. 

Input: PTAP 

Outputs: B, GL 

Function: Calculate the coefficient b and the scaling factor gl of the long-term postfilter. 

 

If ICOUNT ≠ 3, skip the execution of this block, 
otherwise, do the following: 
 If PTAP > 1, set PTAP = 1 
 If PTAP < PPFTH, set PTAP = 0 

 
 
|  Clamp PTAP at 1 
|  Turn off pitch postfilter if 
|  PTAP smaller than threshold 

B = PPFZCF * PTAP 
GL = 1 / (1 + B) 

 

 

SHORT-TERM  POSTFILTER  COEFFICIENT  CALCULATOR  (block 85) 
 
This block is also executed once a frame, but it is executed at the first vector of each frame. 

Inputs: APF, RCTMP(1) 

Outputs: AP, AZ, TILTZ 

Function: Calculate the coefficients of the short-term postfilter. 

 

If ICOUNT ≠ 1, skip the execution of this block, 
otherwise, do the following: 
 For I = 2,3,..,11, do the next two lines 
  AP(I) = SPFPCFV(I) * APF(I) 
  AZ(I) = SPFZCFV(I) * APF(I) 
 TILTZ = TILTF * RCTMP(1) 

 
 
| 
|  Scale denominator coefficients 
|  Scale numerator coefficients 
|  Tilt compensation filter coefficients 
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LONG-TERM  POSTFILTER  (block 71) 
 
This block is executed once a vector. 

Inputs: ST, B, GL, KP 

Output: TEMP 

Function: Perform filtering operation of the long-term postfilter. 

 

For K = 1,2,..,IDIM, do the next line 
 TEMP(K) = GL * (ST(K) + B * ST(K — KP)) 

 
|  Long-term postfiltering 

For K = —NPWSZ — KPMAX + 1,..,—2,—1,0, do the next line 
 ST(K) = ST(K + IDIM) 

 
|  Shift decoded speech buffer 

 

 

SHORT-TERM  POSTFILTER  (block 72) 
 
This block is executed once a vector right after the execution of block 71. 

Inputs: AP, AZ, TILTZ, STPFFIR, STPFIIR, TEMP (output of block 71) 

Output: TEMP 

Function: Perform filtering operation for the short-term postfilter. 

 

For K = 1,2,..,IDIM, do the following: 
 TMP = TEMP(K) 
  For J = 10,9,..,3,2, do the next two lines 
   TEMP(K) = TEMP(K) + STPFFIR (J) * AZ(J + 1) 
   STPFFIR(J) = STPFFIR(J — 1) 
 TEMP(K) = TEMP(K) + STPFFIR(1) * AZ(2) 
 STPFFIR(1) = TMP 

 
 
 
| 
|  All-zero part of the filter 
|  Last multiplier 

 For J = 10,9,..,3,2, do the next two lines 
  TEMP(K) = TEMP(K) — STPFIIR(J) * AP(J + 1) 
  STPFIIR(J) = STPFIIR(J — 1) 
 TEMP(K) = TEMP(K) — STPFIIR(1) * AP(2) 
 STPFIIR(1) = TEMP(K) 
TEMP(K) = TEMP(K) + STPFIIR(2) * TILTZ 

 
| 
|  All-pole part of the filter 
|  Last multiplier 
 
|  Spectral tilt compensation filter 

 

 

SUM  OF  ABSOLUTE  VALUE  CALCULATOR  (block 73) 
 
This block is executed once a vector after execution of block 32. 

Input: ST 

Output: SUMUNFIL 

Function: Calculate the sum of absolute values of the components of the decoded speech vector. 

 

SUMUNFIL = 0 
For K = 1,2,..,IDIM, do the next line 
 SUMUNFIL = SUMUNFIL + absolute value of ST(K) 
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SUM  OF  ABSOLUTE  VALUE  CALCULATOR  (block 74) 
 
This block is executed once a vector after execution of block 72. 

Input: TEMP (output of block 72) 

Output: SUMFIL 

Function: Calculate the sum of absolute values of the components of the short-term postfilter output vector. 

 

SUMFIL = 0 
For K = 1,2,..,IDIM, do the next line 
 SUMFIL = SUMFIL + absolute value of TEMP(K) 

 

 

 

SCALING  FACTOR  CALCULATOR  (block 75) 
 
This block is executed once a vector after execution of blocks 73 and 74. 

Inputs: SUMUNFIL, SUMFIL 

Output: SCALE 

Function: Calculate the overall scaling factor of the postfilter. 

 

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL, 
otherwise, set SCALE = 1 

 

 

 

FIRST-ORDER  LOWPASS  FILTER  (block 76)  and 
OUTPUT  GAIN  SCALING UNIT  (block 77) 

 
These two blocks are executed once a vector after execution of blocks 72 and 75. It is more convenient to describe the 
two blocks together. 

Inputs: SCALE, TEMP (output of block 72) 

Output: SPF 

Function: Lowpass filter the once-a-vector scaling factor and use the filtered scaling factor to scale the short-term 
postfilter output vector. 

 

For K = 1,2,..,IDIM, do the following: 
 SCALEFIL = AGCFAC * SCALEFIL + 
 (1 — AGCFAC) * SCALE 
 SPF(K) = SCALEFIL * TEMP(K) 

 
|  Lowpass filtering 
|  Scale output 
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OUTPUT  PCM  FORMAT  CONVERSION  (block 28) 

 

Input: SPF 

Output: SD 

Function: Convert the five components of the decoded speech vector into 5-corresponding A-law or µ-law PCM 
samples and put them out sequentially at 125 µs time intervals. 

The conversion rules from uniform PCM to A-law or µ-law PCM are specified in Recommendation G.711. 
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ANNEX  A 

(to Recommendation G.728) 

Hybrid window functions for various LPC analyses in LD-CELP 

Recommendation G.728     (09/92)  

 In the LD-CELP coder, we use three separate LPC analyses to update the coefficients of three filters: the 
synthesis filter, the log-gain predictor, and the perceptual weighting filter. Each of these three LPC analyses has its own 
hybrid window. For each hybrid window, we list the values of window function samples that are used in the hybrid 
windowing calculation procedure. These window functions were first designed using floating-point arithmetic and then 
quantized to the numbers which can be exactly represented by 16-bit representations with 15 bits of fraction. For each 
window, we will first give a table containing the floating-point equivalent of the 16-bit numbers and then give a table 
with corresponding 16-bit integer representations. 

A.1 Hybrid window for the synthesis filter 

 The following table contains the first 105 samples of the window function for the synthesis filter. The first 35 
samples are the non-recursive portion, and the rest are the recursive portion. The table should be read from left to right 
from the first row, then left to right for the second row, and so on (just like the raster scan line). 

 

0.047760010 0.095428467 0.142852783 0.189971924 0.236663818 
0.282775879 0.328277588 0.373016357 0.416900635 0.459838867 
0.501739502 0.542480469 0.582000732 0.620178223 0.656921387 
0.692199707 0.725891113 0.757904053 0.788208008 0.816680908 
0.843322754 0.868041992 0.890747070 0.911437988 0.930053711 
0.946533203 0.960876465 0.973022461 0.982910156 0.990600586 
0.996002197 0.999114990 0.999969482 0.998565674 0.994842529 
0.988861084 0.981781006 0.974731445 0.967742920 0.960815430 
0.953948975 0.947082520 0.940307617 0.933563232 0.926879883 
0.920227051 0.913635254 0.907104492 0.900604248 0.894134521 
0.887725830 0.881378174 0.875061035 0.868774414 0.862548828 
0.856384277 0.850250244 0.844146729 0.838104248 0.832092285 
0.826141357 0.820220947 0.814331055 0.808502197 0.802703857 
0.796936035 0.791229248 0.785583496 0.779937744 0.774353027 
0.768798828 0.763305664 0.757812500 0.752380371 0.747009277 
0.741638184 0.736328125 0.731048584 0.725830078 0.720611572 
0.715454102 0.710327148 0.705230713 0.700164795 0.695159912 
0.690185547 0.685241699 0.680328369 0.675445557 0.670593262 
0.665802002 0.661041260 0.656280518 0.651580811 0.646911621 
0.642272949 0.637695313 0.633117676 0.628570557 0.624084473 
0.619598389 0.615142822 0.610748291 0.606384277 0.602020264 
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 The next table contains the corresponding 16-bit integer representation. Dividing the table entries by 
215 = 32 768 gives the table above. 

A.2 Hybrid window for the log-gain predictor 

 The following table contains the first 34 samples of the window function for the log-gain predictor. The first 
20 samples are the non-recursive portion, and the rest are the recursive portion. The table should be read in the same 
manner as the two tables above. 

 

 1 565  3 127  4 681  6 225  7 755 
 9 266  10 757  12 223  13 661  15 068 
 16 441  17 776  19 071  20 322  21 526 
 22 682  23 786  24 835  25 828  26 761 
 27 634  28 444  29 188  29 866  30 476 
 31 016  31 486  31 884  32 208  32 460 
 32 637  32 739  32 767  32 721  32 599 
 32 403  32 171  31 940  31 711  31 484 
 31 259  31 034  30 812  30 591  30 372 
 30 154  29 938  29 724  29 511  29 299 
 29 089  28 881  28 674  28 468  28 264 
 28 062  27 861  27 661  27 463  27 266 
 27 071  26 877  26 684  26 493  26 303 
 26 114  25 927  25 742  25 557  25 374 
 25 192  25 012  24 832  24 654  24 478 
 24 302  24 128  23 955  23 784  23 613 
 23 444  23 276  23 109  22 943  22 779 
 22 616  22 454  22 293  22 133  21 974 
 21 817  21 661  21 505  21 351  21 198 
 21 046  20 896  20 746  20 597  20 450 
 20 303  20 157  20 013  19 870  19 727 

 

 

0.092346191 0.183868408 0.273834229 0.361480713 0.446014404 
0.526763916 0.602996826 0.674072266 0.739379883 0.798400879 
0.850585938 0.895507813 0.932769775 0.962066650 0.983154297 
0.995819092 0.999969482 0.995635986 0.982757568 0.961486816 
0.932006836 0.899078369 0.867309570 0.836669922 0.807128906 
0.778625488 0.751129150 0.724578857 0.699005127 0.674316406 
0.650482178 0.627502441 0.605346680 0.583953857  
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 The next table contains the corresponding 16-bit integer representation. Dividing the table entries by 
215 = 32 768 gives the table above. 

A.3 Hybrid window for the perceptual weighting filter 

 The following table contains the first 60 samples of the window function for the perceptual weighting filter. 
The first 30 samples are the non-recursive portion, and the rest are the recursive portion. The table should be read in the 
same manner as the four tables above. 

 The next table contains the corresponding 16-bit integer representation. Dividing the table entries by 
215 = 32 768 gives the table above. 

 

 
ANNEX  B 

 

 3 026  6 025  8 973  11 845  14 615 
 17 261  19 759  22 088  24 228  26 162 
 27 872  29 344  30 565  31 525  32 216 
 32 631  32 767  32 625  32 203  31 506 
 30 540  29 461  28 420  27 416  26 448 
 25 514  24 613  23 743  22 905  22 096 
 21 315  20 562  19 836  19 135   

 

 

0.059722900 0.119262695 0.178375244 0.236816406 0.294433594 
0.351013184 0.406311035 0.460174561 0.512390137 0.562774658 
0.611145020 0.657348633 0.701171875 0.742523193 0.781219482 
0.817108154 0.850097656 0.880035400 0.906829834 0.930389404 
0.950622559 0.967468262 0.980865479 0.990722656 0.997070313 
0.999847412 0.999084473 0.994720459 0.986816406 0.975372314 
0.960449219 0.943939209 0.927734375 0.911804199 0.896148682 
0.880737305 0.865600586 0.850738525 0.836120605 0.821746826 
0.807647705 0.793762207 0.780120850 0.766723633 0.753570557 
0.740600586 0.727874756 0.715393066 0.703094482 0.691009521 
0.679138184 0.667480469 0.656005859 0.644744873 0.633666992 
0.622772217 0.612091064 0.601562500 0.591217041 0.581085205 

 

 

 1 957  3 908  5 845  7 760  9 648 
 11 502  13 314  15 079  16 790  18 441 
 20 026  21 540  22 976  24 331  25 599 
 26 775  27 856  28 837  29 715  30 487 
 31 150  31 702  32 141  32 464  32 672 
 32 763  32 738  32 595  32 336  31 961 
 31 472  30 931  30 400  29 878  29 365 
 28 860  28 364  27 877  27 398  26 927 
 26 465  26 010  25 563  25 124  24 693 
 24 268  23 851  23 442  23 039  22 643 
 22 254  21 872  21 496  21 127  20 764 
 20 407  20 057  19 712  19 373  19 041 
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(to Recommendation G.728) 

Excitation shape and gain codebook tables 

 This annex first gives the 7-bit excitation VQ shape codebook table. Each row in the table specifies one of the 
128 shape codevectors. The first column is the channel index associated with each shape codevector (obtained by a 
Gray-code index assignment algorithm). The second through the sixth columns are the first through the fifth components 
of the 128 shape codevectors as represented in the 16-bit fixed point. To obtain the floating point value from the integer 
value, divide the integer value by 2 048. This is equivalent to multiplication by 2—11 or shifting the binary point 11 bits 
to the left. 

 

Channel index Codevector components 

0 668 —2 950 —1 254 —1 790 —2 553 
1 —5 032 —4 577 —1 045 2 908 3 318 
2 —2 819 —2 677 —948 —2 825 —4 450 
3 —6 679 —340 1 482 —1 276 1 262 
4 —562 —6 757 1 281 179 —1 274 
5 —2 512 —7 130 —4 925 6 913 2 411 
6 —2 478 —156 4 683 —3 873 0 
7 —8 208 2 140 —478 —2 785 533 
8 1 889 2 759 1 381 —6 955 —5 913 
9 5 082 —2 460 —5 778 1 797 568 

10 —2 208 —3 309 —4 523 —6 236 —7 505 
11 —2 719 4 358 —2 988 —1 149 2 664 
12 1 259 995 2 711 —2 464 —10 390 
13 1 722 —7 569 —2 742 2 171 —2 329 
14 1 032 747 —858 —7 946 —12 843 
15 3 106 4 856 —4 193 —2 541 1 035 
16 1 862 —960 —6 628 410 5 882 
17 —2 493 —2 628 —4 000 —60 7 202 
18 —2 672 1 446 1 536 —3 831 1 233 
19 —5 302 6 912 1 589 —4 187 3 665 
20 —3 456 —8 170 —7 709 1 384 4 698 
21 —4 699 —6 209 —11 176 8 104 16 830 
22 930 7 004 1 269 —8 977 2 567 
23 4 649 11 804 3 441 —5 657 1 199 
24 2 542 —183 —8 859 —7 976 3 230 
25 —2 872 —2 011 —9 713 —8 385 12 983 
26 3 086 2 140 —3 680 —9 643 —2 896 
27 —7 609 6 515 —2 283 —2 522 6 332 
28 —3 333 —5 620 —9 130 —11 131 5 543 
29 —407 —6 721 —17 466 —2 889 11 568 
30 3 692 6 796 —262 —10 846 —1 856 
31 7 275 13 404 —2 989 —10 595 4 936 
32 244 —2 219 2 656 3 776 —5 412 
33 —4 043 —5 934 2 131 863 —2 866 
34 —3 302 1 743 —2 006 —128 —2 052 
35 —6 361 3 342 —1 583 —21 1 142 

 36 —3 837 —1 831 6 397 2 545 —2 848 >> 
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<< Channel index Codevector components  

37 —9 332 —6 528 5 309 1 986 —2 245 
38 —4 490 748 1 935 —3 027 —493 
39 —9 255 5 366 3 193 —4 493 1 784 
40 4 784 —370 1 866 1 057 —1 889 
41 7 342 —2 690 —2 577 676 —611 
42 —502 2 235 —1 850 —1 777 —2 049 
43 1 011 3 880 —2 465 2 209 —152 
44 2 592 2 829 5 588 2 839 —7 306 
45 —3 049 —4 918 5 955 9 201 —4 447 
46 697 3 908 5 798 —4 451 —4 644 
47 —2 121 5 444 —2 570 321 —1 202 
48 2 846 —2 086 3 532 566 —708 
49 —4 279  950 4 980 3 749 452 
50 —2 484 3 502 1 719 —170 238 
51 —3 435 263 2 114 —2 005 2 361 
52 —7 338 —1 208 9 347 —1 216 —4 013 
53 —13 498 —439 8 028 —4 232 361 
54 —3 729 5 433 2 004 —4 727 —1 259 
55 —3 986 7 743 8 429 —3 691 —987 
56 5 198 —423 1 150 —1 281 816 
57 7 409 4 109 —3 949 2 690 30 
58 1 246 3 055 —35 —1 370 —246 
59 —1 489 5 635 —678 —2 627 3 170 
60 4 830 —4 585 2 008 —1 062 799 
61 —129 717 4 594 14 937 10 706 
62 417 2 759 1 850 —5 057 —1 153 
63 —3 887 7 361 —5 768 4 285 666 
64 1 443 —938 20 —2 119 —1 697 
65 —3 712 —3 402 —2 212 110 2 136 
66 —2 952 12 —1 568 —3 500 —1 855 
67 —1 315 —1 731 1 160 —558 1 709 
68 88 —4 569 194 —454 —2 957 
69 —2 839 —1 666 —273 2 084 —155 
70 —189 —2 376 1 663 —1 040 —2 449 
71 —2 842 —1 369 636 —248 —2 677 
72 1 517 79 —3 013 —3 669 —973 
73 1 913 —2 493 —5 312 —749 1 271 
74 —2 903 —3 324 —3 756 —3 690 —1 829 
75 —2 913 —1 547 —2 760 —1 406 1 124 
76 1 844 —1 834 456 706 —4 272 
77 467 —4 256 —1 909 1 521 1 134 
78 —127 —994 —637 —1 491 —6 494 
79 873 —2 045 —3 828 —2 792 —578 
80 2 311 —1 817 2 632 —3 052 1 968 
81 641 1 194 1 893 4 107 6 342 

 82 —45 1 198 2 160 —1 449 2 203 >> 



58 Recommendation G.728     (09/92) 

 

<< Channel index Codevector components  

83 —2 004 1 713 3 518 2 652 4 251 
84 2 936 —3 968 1 280 131 —1 476 
85 2 827 8 —1 928 2 658 3 513 
86 3 199 —816 2 687 —1 741 —1 407 
87 2 948 4 029 394 —253 1 298 
88 4 286 51 —4 507 —32 —659 
89 3 903 5 646 —5 588 —2 592 5 707 
90 —606 1 234 —1 607 —5 187 664 
91 —525 3 620 —2 192 —2 527 1 707 
92 4 297 —3 251 —2 283 812 —2 264 
93 5 765 528 —3 287 1 352 1 672 
94 2 735 1 241 —1 103 —3 273 —3 407 
95 4 033 1 648 —2 965 —1 174 1 444 
96 74 918 1 999 915 —1 026 
97 —2 496 —1 605 2 034 2 950 229 
98 —2 168 2 037 15 —1 264 —208 
99 —3 552 1 530 581 1 491 962 

100 —2 613 —2 338 3 621 —1 488 —2 185 
101 —1 747 81 5 538 1 432 —2 257 
102 —1 019 867  214 —2 284 —1 510 
103 —1 684 2 816 —229 2 551 —1 389 
104 2 707 504 479 2 783 —1 009 
105 2 517 —1 487 —1 596  621 1 929 
106 —148 2 206 —4 288 1 292 —1 401 
107 —527 1 243 —2 731 1 909 1 280 
108 2 149 —1 501 3 688 610 —4 591 
109 3 306 —3 369 1 875 3 636 —1 217 
110 2 574 2 513 1 449 —3 074 —4 979 
111 814 1 826 —2 497 4 234 —4 077 
112 1 664 —220 3 418 1 002 1 115 
113 781 1 658 3 919 6 130 3 140 
114 1 148 4 065 1 516 815 199 
115 1 191 2 489 2 561 2 421 2 443 
116 770 —5 915 5 515 —368 —3 199 
117 1 190 1 047 3 742 6 927 —2 089 
118 292 3 099 4 308 —758 —2 455 
119 523 3 921 4 044 1 386 85 
120 4 367 1 006 —1 252 —1 466 —1 383 
121 3 852 1 579 —77 2 064  868 
122 5 109 2 919 —202 359 —509 
123 3 650 3 206 2 303 1 693 1 296 
124 2 905 —3 907 229 —1 196 —2 332 
125 5 977 —3 585 805 3 825 —3 138 
126 3 746 —606 53 —269 —3 301 
127 606 2 018 —1 316 4 064 398 
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 Next we give the values for the gain codebook. This table not only includes the values for GQ, but also the 
values for GB, G2 and GSQ as well. Both GQ and GB can be represented exactly in 16-bit arithmetic using Q13 format. 
The fixed point representation of G2 is just the same as GQ, except the format is now Q12. An approximate 
representation of GSQ to the nearest integer in fixed point Q12 format will suffice. 

 

ANNEX  C 

(to Recommendation G.728) 

Values for bandwidth broadcasting 

 The following table gives the integer values for the pole control, zero control and bandwidth broadening 
vectors listed in Table 2/G.728. To obtain the floating point value, divide the integer value by 16 384. The values in this 
table represent these floating point values in the Q14 format, the most commonly used format to represent numbers less 
than 2 in 16-bit fixed point arithmetic. 

 

Values of gain codebook related arrays 

Array index 1 2 3 4 5 6 7 8 

 GQ b)  0.515625  0.90234375 1.579101563 2.763427734 — GQ(1)  — GQ(2) — GQ(3) — GQ(4) 

 GB  0.708984375  1.240722656 2.171264649 a) — GB(1) — GB(2) — GB(3) a) 

 G2  1.03125  1.8046875 3.158203126 5.526855468 — G2(1)  — G2(2) — G2(3)  — G2(4) 

 GSQ  0.26586914  0.814224243 2.493561746 7.636532841 GSQ(1) GSQ(2)  GSQ(3) GSQ(4) 

a) Can be any arbitrary value (not used). 
b) Note that GQ(1)  = 33/64, and GQ(i) = (7/4) GQ(i — 1) for i = 2, 3, 4. 

 

i FACV FACGPV WPCFV WZCFV SPFPCFV SPFZCFV 

1 16 384 16 384 16 384 16 384 16 384 16 384 
2 16 192 14 848 9 830 14 746 12 288 10 650 
3 16 002 13 456 5 898 13 271 9 216 6 922 
4 15 815 12 195 3 539 11 944 6 912 4 499 
5 15 629 11 051 2 123 10 750 5 184 2 925 
6 15 446 10 015 1 274 9 675 3 888 1 901 
7 15 265 9 076 764 8 707 2 916 1 236 
8 15 086 8 225 459 7 836 2 187 803 
9 14 910 7 454 275 7 053 1 640 522 

10 14 735 6 755 165 6 347 1 230 339 
11 14 562 6 122 99 5 713 923 221 
12 14 391      
13 14 223      
14 14 056      

 15 13 891      >> 
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<< i FACV FACGPV WPCFV WZCFV SPFPCFV SPFZCFV  

16 13 729      
17 13 568      
18 13 409      
19 13 252      
20 13 096      
21 12 943      
22 12 791      
23 12 641      
24 12 493      
25 12 347      
26 12 202      
27 12 059      
28 11 918      
29 11 778      
30 11 640      
31 11 504      
32 11 369      
33 11 236      
34 11 104      
35 10 974      
36 10 845      
37 10 718      
38 10 593      
39 10 468      
40 10 346      
41 10 225      
42 10 105      
43 9 986      
44 9 869      
45 9 754      
46 9 639      
47 9 526      
48 9 415      
49 9 304      
50 9 195      
51 9 088      
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ANNEX  D 

(to Recommendation G.728) 

Coefficients of the 1 kHz lowpass elliptic filter used in  
pitch period extraction module (block 82) 

 The 1 kHz lowpass filter used in the pitch lag extraction and encoding module (block 82) is a third-order pole-
zero filter with a transfer function of 

   L(z) = 

∑
i=0

3
  bi z–i

 1 + ∑
i=1

3
  ai z–i

 

where the coefficients ai and bi are given in the following tables. 

ANNEX  E 

(to Recommendation G.728) 

Time scheduling the sequence of computations 

 All of the computation in the encoder and decoder can be divided up into two classes. Included in the first 
class are those computations which take place once per vector. Sections 3 through § 5.14 note which computations these 
are. Generally they are the ones which involve or lead to the actual quantization of the excitation signal and the synthesis 
of the output signal. Referring specifically to the block numbers in Figure 2/G.728, this class includes blocks 1, 2, 4, 9, 
10, 11, 13, 16, 17, 18, 21 and 22. In Figure 3/G.728, this class includes blocks 28, 29, 31, 32 and 34. In Figure 6/G.728, 
this class includes blocks 39, 40, 41, 42, 46, 47, 48 and 67. (Note that Figure 6/G.728 is applicable to both block 20 in 
Figure 2/G.728 and block 30 in Figure 3/G.728. Blocks 43, 44 and 45 of Figure 6/G.728 are not part of this class. Thus, 
blocks 20 and 30 are part of both classes. 

 In the other class are those computations which are only done once for every four vectors. Once more referring 
to Figures 2/G.728 through 8/G.728, this class includes blocks 3, 12, 14, 15, 23, 33, 35, 36, 37, 38, 43, 44, 45, 49, 50, 
51, 81, 82, 83, 84 and 85. All of the computations in this second class are associated with updating one or more of the 
adaptive filters or predictors in the coder. In the encoder there are three such adaptive structures, the 50th order LPC 
synthesis filter, the vector gain predictor, and the perceptual weighting filter. In the decoder there are four such 
structures, the synthesis filter, the gain predictor, and the long-term and short-term adaptive postfilters. Included in the 
descriptions of § 3 through § 5.14 are the times and input signals for each of these five adaptive structures. Although it is 
redundant, this annex explicitly lists all of this timing information in one place for the convenience of the reader. Table 
E-1/G.728 summarizes the five adaptive structures, their input signals, their times of computation and the time at which 
the updated values are first used. For reference, the fourth column in Table E-1/G.728 refers to the block numbers used 
in the figures and in §§ 3 to 5 as a cross reference to these computations. 

 

i ai bi 

0 —0 –0.0357081667  

1 2–2.3403658918 –0.0069956244 

2 –2.011900199 –0.0069956244 

3 –0.614109218 –0.0357081667 
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 By far, the largest amount of computation is expended in updating the 50th order synthesis filter. The input 
signal required is the synthesis filter output speech (ST). As soon as the fourth vector in the previous cycle has been 
decoded, the hybrid window method for computing the autocorrelation coefficients can commence (block 49). When it 
is completed, Durbin’s recursion to obtain the prediction coefficients can begin (block 50). In practice we found it 
necessary to stretch this computation over more than one vector cycle. We begin the hybrid window computation before 
vector 1 has been fully received. Before Durbin’s recursion can be fully completed, we must interrupt it to encode vector 
1. Durbin’s recursion is not completed until vector 2. Finally bandwidth expansion (block 51) is applied to the predictor 
coefficients. The results of this calculation are not used until the encoding or decoding of vector 3 because in the 
encoder we need to combine these updated values with the update of the perceptual weighting filter and codevector 
energies. These updates are not available until vector 3. 

 The gain adaptation precedes in two fashions. The adaptive predictor is updated once every four vectors. 
However, the adaptive predictor produces a new gain value once per vector. In this section we are describing the timing 
of the update of the predictor. To compute this requires first performing the hybrid window method on the previous log 
gains (block 43), then Durbin's recursion (block 44), and bandwidth expansion (block 45). All of this can be completed 
during vector 2 using the log gains available up through vector 1. If the result of Durbin’s recursion indicates there is no 
singularity, then the new gain predictor is used immediately in the encoding of vector 2. 

 The perceptual weighting filter update is computed during vector 3. The first part of this update is performing 
the LPC analysis on the input speech up through vector 2. We can begin this computation immediately after vector 2 has 
been encoded, not waiting for vector 3 to be fully received. This consists of performing the hybrid window method 
(block 36), Durbin’s recursion (block 37) and the weighting filter coefficient calculations (block 38). Next we need to 
combine the perceptual weighting filter with the updated synthesis filter to compute the impulse response vector 
calculator (block 12). We also must convolve every shape codevector with this impulse response to find the codevector 
energies (blocks 14 and 15). As soon as these computations are completed, we can immediately use all of the updated 
values in the encoding of vector 3. 

TABLE E-1/G.728 

Timing of adapter updates 

Adapter Input signal(s) First use of updated parameters Reference blocks 

Backward synthesis filter 
adapter 

Synthesis filter output speech 
(ST) through vector 4 

Encoding/decoding vector 3 23, 33, 
(49,50,51) 

Backward vector gain adapter Log gains through vector 1 Encoding/decoding vector 2 20, 30 
(43,44,45) 

Adapter for perceptual 
weighting filter and fast 
codebook search 

Input speech (S) through 
 vector 2 

Encoding vector 3 3 
(36,37,38) 
12, 14, 15 

Adapter for long-term adaptive 
postfilter 

Synthesis filter output speech 
(ST) through vector 3 

Synthesizing postfiltered vector 
3 

35 
(81 to 84) 

Adapter for short-term adaptive 
postfilter 

Synthesis filter output speech 
(ST) through vector 4 

Synthesizing postfiltered vector 
1 

35 
(85) 
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 Note — Because the computation of codevector energies is fairly intensive, we were unable to complete the 
perceptual weighting filter update as part of the computation during the time of vector 2, even if the gain predictor 
update were moved elsewhere. This is why it was deferred to vector 3. 

 The long-term adaptive postfilter is updated on the basis of a fast pitch extraction algorithm which uses the 
synthesis filter output speech (ST) for its input. Since the postfilter is only used in the decoder, scheduling time to 
perform this computation was based on the other computational loads in the decoder. The decoder does not have to 
update the perceptual weighting filter and codevector energies, so the time slot of vector 3 is available. The codeword 
for vector 3 is decoded and its synthesis filter output speech is available together with all previous synthesis output 
vectors. These are input to the adapter which then produces the new pitch period (blocks 81 and 82) and long-term 
postfilter coefficient (blocks 83 and 84). These new values are immediately used in calculating the postfiltered output 
for vector 3. 

 The short-term adaptive postfilter is updated as a by-product of the synthesis filter update. Durbin's recursion 
is stopped at order 10 and the prediction coefficients are saved for the postfilter update. Since the Durbin computation is 
usually begun during vector 1, the short-term adaptive postfilter update is completed in time for the postfiltering of 
output vector 1. 

 

ANNEX  F 

(to Recommendation G.728) 

Alphabetical list of abbreviations used in this Recommendation 

 

CELP   Code excited linear prediction 

DCME Digital circuit multiplication equipment 

DSP Digital signal processing 

LD-CELP Low-delay code excited linear prediction 

LPC Linear prediction coding 

MSE Mean-squared error 

PCM Pulse code modulation 

RMS Root-mean-square 

VQ Vector quantization 

WNCF White noise correction factor 

 

 

APPENDIX  1 

(to Recommendation G.728) 

Implementation verification 

 A set of verification tools have been designed in order to facilitate the compliance verification of different 
implementations to the algorithm defined in this Recommendation. These verification tools are available from the ITU 
on a set of distribution diskettes. 
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