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Abstract 

In this article we present speech detection systems based on Daubechie, Coiflet and Symlet 
wavelet transforms respectively. For each a selection of the most eligible levels of signal 
decomposition for the corrupted speech detection problem was made. 

Using those levels the distinction between noise and corrupted signal can be amplified as far 
as 100 times. Tests were accomplished using a set of Slovak words artificially noised to several 
SNR by white WSS noise. 
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1 Introduction 

The task of voice activity detection consists of labelling speech end-points in audio signals. 
Speech contains high-energy vowels of various lengths as well as unvoiced consonants of low 
energy and higher frequency components, all varied in the time (even intervals of silence can be 
part of speech). Added noises can dramatically deteriorate the whole detection process, because 
they can dispose of various characteristics that makes their separation from speech sometime 
almost impossible.  

Driving motivations behind this article are the application areas like: speech compression and 
transmission, speech recognition, etc. and the promising results of DWT employment in signal 
processing. 

 
2 Wavelet transform 

Classical Fourier transform works well in wide sense stationary signals, but is of little use in 
non-stationary signals, because of its hidden localization information. This was amended by the 
short time FT, which on the other hand leads to the spectral distortion due to the window 
properties [1]. Still, by STFT we can achieve only uniform time- frequency distribution and 
harmonic basis functions. 

Many of wavelet transforms can eliminate these weaknesses. Their main advantages that are 
crucial in our development follow: 



•  They provide explicit localization of events in the signal that is very true if scaling and 
wavelet function have compact support. 

•  Various time-frequencies distribution can be achieved (logarithmic most usual). 
•  Theoretically there is an unlimited number of scaling and wavelet functions. 
•  DTW can be easily realized by filter bank or lifting scheme [4]. 
 
Using Wavelet transforms any signal or function belonging to L2 can be expressed by (1): 

Where φk(t) and ψjk(t) are scaling and wavelet functions respectively. The expansion coefficients 
c(k) and dj(k) can be calculated as the inner product of a signal and wavelet or scaling functions. 
Scaling function and all its integral shifts form the basis of the coarsest sub space V0 of L2. The 
rest of L2 is then covered by infinite set of disjunctive spaces (W0, W1, …) each of which is 
represented by the integral time shifts of a given wavelet function, i.e. L2= V∞=V0 ∪  W0 ∪  W1 ∪  
W2 ∪ … Space V1=V0∪ W0 is determined by the basis functions of V0 being time shifted and time 
scaled versions (shrunk by factor 2). Then scaling and wavelet functions of V0 can be expressed 
by (2) in the terms of V1 basis functions: 

Both functions are derived as a linear combination of scaling functions from V1. Where h(n) and 
h1(n) are weights of the length N and they form low pass and high pass FIR filters respectively. 
Then expansion coefficients cj(k) and dj(k) in different levels of decomposition can be calculated 
using (3). 

Equations (3) are called the analysis part of the DWT and their synthesis counterparts are given 
in (4): 

Those formulas were derived for continuous signals. In the discrete case, signal samples are 
regarded as coefficients cj(k) in the uppermost level. This is a good approximation for most 
wavelet systems as their wavelet functions at those levels act as the Dirac function when the 
calculation of their inner products with tested signal is performed. 

There are many necessary and sufficient conditions that a wavelet system must meet. For 
example a 2-band orthogonal wavelet system must fulfil following simultaneous equations (5): 

Where δ(m) is the Kroneker unit impulse and N is the length of low pass filter. Other conditions 
and properties can be found e.g. in [2].  

Chosen wavelets i.e. Daubechies, Coiflets and Symlets are well-known, orthonormal systems 
with following features. In Daubechie systems the freedom given by (5) is used to set to zero all 
moments of the mother wavelet spanning W0 up to k-th order (6). 
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This maximizes the smoothness of both scaling and wavelet functions (important for expansion 
of smooth signals). Coiflet systems have both moments of scaling and wavelet functions set to 
zero up to some order where the length of h(n) is kept minimal. This provides better 
approximation of the expansion coefficients by the samples of signal and produces more 
symmetric scaling functions too. Symmetry is the pursued property of Symlet wavelets (they are 
not completely symmetric) derived from the class of Daubachie wavelets. Other systems can use 
this freedom to meet different properties. 

 
3 Speech detection based on wavelets 

In the first stage of the detection algorithm a signal is processed in order that the distinction 
between noise and sections of signal is amplified by proper transformation. Second stage 
measures and evaluates those features and takes the final decision. Both parts are equally 
important and related and thus chronologically explained in the following. 

As speech signals are well characterized by their frequency, energy and time structure it is 
sensible to require the transform to be orthogonal. This along with the compact support basis 
ensures the true energy localisation in the time as well as provides satisfactory frequency 
distribution, vital for analysis of non- stationary signals. Furthermore, taking into account human 
sound perception, audio signal analysis should be done in the similar way to the logarithmic band 
division [3], referring to concepts like: critical bands, Mel frequency spectrum, etc. Those 
requirements usually significantly constrain the freedom the designers may demand, but we can 
liberate the strict condition on full reconstruction, which is pointless for speech analysis. Finally, 
employment of wavelets is straightforward and can be even faster than FFT using the lifting 
scheme [4]. 

Keeping up to the abovementioned facts we decided for two-band (logarithmic frequency 
tilling) orthogonal systems. We deliberated to test and to compare the usage of basic wavelet 
classes in this area of speech processing. The basic idea is that smooth wavelet or scaling 
functions at certain levels (Wi,..Wj) should take up the most information from voiced parts of 
speech when broad-band noise is assumed. On the contrary unvoiced consonant and broadband 
noises with zero mean strongly tend to be expressed by high-resolution levels. The task is to find 
those resolution levels and proper wavelet functions, which do it best. Certain insight into this 
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Figure 1. Scaling and wavelet functions generated by Daubechie system with the filter length 12
samples. 



can be made by observing courses of wavelet and scaling functions, e.g. fig.1. The more the 
course resembles the course of voiced speech the better distinction can be obtain. 

In the second stage a threshold-based decision-taking algorithm is employed. It tests the 
values of expansion coefficients at W5 level that proved to be well distinctive against a threshold 
set up during the design process. The threshold was set to minimize the miss ratio. Then a fine 
adjustment of both boundaries is performed at more detailed level (W12) shifting them closer to 
each other till additional thresholds are met. This operation is not needed but it can further 
decrease the mean detection error at the expense of higher miss ratio. 

This simple and fast magnitude checking algorithm is in place due to the orthogonality 
principle and the fact that a good approximation of voiced speech can be achieved by eligible 
wavelet functions at certain levels in contrary to broadband noise. 

 
4. Experiments and results 

All tests were executed at the special set of 36 Slovak words. Each word was located in 
separate wav file (8kHz, 16 bits) with intervals of silence before and after the utterance. Those 
words were artificially noised by white noise in following SNR: 0, 3, 7, 10, 13 and 17dB. 

We accomplished experiments with Daubechie, Coiflet and Symlet DWT. Each can produce 
different shapes of wavelet and scaling functions according to the length of FIR filters. In fig. 2 
the mean detection errors are depicted as a function of the filter length. This provided us with the 
proper range of filters lengths for each class. Others very important parameters to be found are 
the most significant resolution levels for speech detection affected by broadband noises. This is 
best viewed by the ratio of averaged absolute coefficients (intensity) in the corrupted speech to 
the average absolute values of those coefficients taken from noise only. Those ratios are shown in 
fig. 3 for all SNR and meaningful resolution levels in case of Symlet -17. For comparison reasons 
we present in fig. 4 these ratios measured in “raw” signal so that the significant separation of 
noise by applied DWT can be highlighted. Finally, fig. 5 depicts the mean detection error as a 
function of SNR for all tested wavelet classes. 

 
 
 
 

Figure 2 Detection errors as a function of the length of FIR filters for Cioflet, Symlet and Daubechie systems. 



 
5. Conclusions 
•  As fig. 5 shows the detection error is not a declining 

function of SNR as it may have been expected. This 
can be well explained as follows. First, some 
parameters, which can not be adjusted in the 
process of detection or it would made the system 
too complicated, were set up for the case of SNR 10 
dB, which may not be the optimal for other values. 
Second, the presences of speech artefacts outside 
utterances (expiration, lip clicking) are more 
eminent at higher values of SNR. Finally, it is a 
proof of good separation of voiced parts by the 
wavelet systems in broadband noise at these SNR. 
Further degradation related to low SNR occurs in 
more adverse environment than tested. 

•  From fig. 4 it can be inferred that short filters may 
not provide best results which can be caused by poor frequency separation into bands or that 
wavelet functions are not smooth enough to copy voiced speech segments because they miss 
enough zeros to do so. In contrary, long filters would fall short in the fine time localization. The 
proper range is from 30 to 60, but it depends on the wavelet system. 

•   Too coarse or detailed levels of resolution do not reflect voiced sounds which carry most 
energy of the speech signals and thus are easily detected even in low SNR. Eligible intervals 
can be determined following figure 3. It can be seen that intensity ratios of those coefficients in 

Figure 5. The mean detection errors in 
milliseconds for Daubechies, Coiflets and 
Symlets as a function of SNR 

Figure 3 Ratios of mean absolutes values in the
words to noise only parts distributed over some
resolution levels as a function of SNR. It is the
Symlet wavelet system of the FIR length 17 

Figure 4 Ratios of mean intensities of noised 
words to noise only parts as a function of SNR



noised signals and noises can reach up to 250, where 100 is a common value. In the contrary, 
without DWT analysis part these ratios are within the range from 1 to 10 (fig. 4). That shows a 
substantial improvement in speech / noise distinction, based on the intensity measure. 

•  Originally we aimed to detect transient events in the speech by the means of DWT. This 
approach turned out to be of little use in speech signals since those are not as significant and 
obvious as in image processing where this approach can be used for edge detection [2]. 
Additional noises with sharp courses would make this task almost impossible. 

•  Although these methods are restricted to broad-band noises, they present flexible systems 
which can be tailored to suite the given environment. It is still possible to utilize the knowledge 
of the environment to create optimal wavelet functions “on line” so that the distinction between 
noise and speech is kept high; however this would be much more difficult and many other 
problems would have to be solved. Other improvements can be reached by even more flexible 
time frequency distribution like that given by e.g. Wavelet pockets, Multi-wavelets. 
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